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Abstract. This paper reports on an effort of reproducing the organizers’
baseline as well as the top performing participant submission at the 2021
edition of the TREC Conversational Assistance track. TREC systems
are commonly regarded as reference points for effectiveness comparison.
Yet, the papers accompanying them have less strict requirements than
peer-reviewed publications, which can make reproducibility challenging.
Our results indicate that key practical information is indeed missing.
While the results can be reproduced within a 19% relative margin with
respect to the main evaluation measure, the relative difference between
the baseline and the top performing approach shrinks from the reported
18% to 5%. Additionally, we report on a new set of experiments aimed
at understanding the impact of various pipeline components. We show
that end-to-end system performance can indeed benefit from advanced
retrieval techniques in either stage of a two-stage retrieval pipeline. We
also measure the impact of the dataset used for fine-tuning the query
rewriter and find that employing different query rewriting methods in
different stages of the retrieval pipeline might be beneficial. Moreover,
these results are shown to generalize across the 2020 and 2021 editions
of the track. We conclude our study with a list of lessons learned and
practical suggestions.

Keywords: Conversational search · Query rewriting · Dense retrieval ·
Passage re-ranking · TREC CAsT · Reproducibility

1 Introduction

The last few years have seen an acceleration of research on multi-turn, natural
language, and long-term user modeling capabilities of search systems with an
attempt to make them more conversational [33]. The Conversational Assistance
Track (CAsT) at the Text Retrieval Conference (TREC) [7–9] has been a key
enabler of progress in this area, by providing a reusable test collection for con-
versational search. The task at TREC CAsT is to identify relevant content from
a collection of passages, “for conversational queries that evolve through a tra-
jectory of a discussion on a topic” [9]. Over the years, query rewriting, passage
retrieval, and passage reranking have emerged as the main components, which
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are combined in a pipeline architecture. Clearly, the ranking components can
directly benefit from advances in dense/hybrid passage retrieval [17], and are
indeed critical to overall system performance. However, what makes the task in-
teresting from a conversational perspective, and different from passage retrieval,
is the problem of query rewriting [14, 16, 18, 23, 24, 26, 31].

It has been shown that the best performing systems at TREC form a very
competitive reference point for effectiveness comparison [2]. This means that,
even if one’s ultimate research interest lies in query rewriting, demonstrating
strong absolute performance for conversational search requires a high degree of
effectiveness from all system components. Our main objective in this paper is to
reproduce (1) the best performing baseline method provided by the track orga-
nizers [9] and (2) the top performing (documented) system [28] from the latest
(2021) edition of TREC CAsT. These two approaches are seen as representa-
tives of a strong baseline and the state of the art, respectively. It is worth noting
that the system description papers accompanying TREC submissions are not
peer-reviewed and there is no explicit or implicit reproducibility requirement.
This can make reproducibility particularly challenging and a study such as this
particularly insightful.

Both selected systems follow a two-stage retrieve-then-rerank pipeline archi-
tecture with queries rewritten based on conversational context. Specifically, the
baseline system [9] uses a T5-based query rewriting model fine-tuned on CA-
NARD [11], first-pass retrieval based on BM25, and a pointwise T5 re-ranker.
The top participating system [28] uses a different dataset for fine-tuning the
query rewriting model (QReCC [1]) and employs more advanced ranking compo-
nents: a combination of sparse-dense retrieval with pseudo relevance feedback for
first-pass retrieval (ANCE/BM25/PRF), and pointwise/pairwise (mono/duoT5)
re-ranking. We find that these complex multi-step architectures are challenging
to reproduce due to the numerous components involved. Neither the baseline
nor the top participating system can be fully reproduced due to key information
missing about model choices, parameters, and various input preparation and col-
lection preprocessing steps. With a best-effort attempt, the results we obtain are
within 12% and 21% relative margins for the baseline and top performing sys-
tems, respectively, with regards to all evaluation measures reported in the track
overview paper [9]. However, the relative differences between the two shrink from
18% in NDCG@3 and 37% in recall, according to the track overview, to 5% and
7%, respectively, according to our reproduced systems.

Since the two selected systems follow the same basic two-stage retrieval
pipeline, we perform additional experiments in order to better understand how
each pipeline component contributes to overall effectiveness. To shed light on
the generalizability of findings, we report results on both the 2020 and 2021
editions of TREC CAsT. Since the query rewriter influences the effectiveness
of both first-pass retrieval and re-ranking, we also perform experiments using a
different retrieval pipeline, which can utilize different query rewriting methods
for the two ranking stages. We find that final performance is indeed influenced
by the position of the query rewriting component in the retrieval pipeline: T5
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fine-tuned on CANARD gives better results than fine-tuning on QReCC in terms
of first-pass retrieval (higher recall), whereas the best overall results (NDCG@3)
are achieved by the system using QReCC for first-pass retrieval and CANARD
for re-ranking. This suggests that employing different query rewriting methods
for the different stages might be beneficial.

In summary, the main contributions of this paper are twofold. First, we at-
tempt to reproduce two approaches from the latest edition of TREC CAsT, the
organizers’ baseline and the top performing submission, and report results and
lessons learned. Second, we present additional experiments on two-stage retrieval
pipelines and query rewriting models to provide insights into the potential con-
tributions of various components. All resources developed within this study (i.e.,
source code, runfiles, evaluation results) are made publicly available.1

2 Related Work

We briefly introduce the TREC Conversational Assistance Track, discuss query
rewriting approaches, and review ranking architectures used at TREC CAsT.

2.1 TREC Conversational Assistance Track

The Conversational Assistance Track at TREC has started in 2019 with the aim
to facilitate research on conversational information seeking, by creating a large-
scale reusable test collection [7]. The task is to identify relevant passages (in 2019
and 2020) or documents (in 2021) from a collection comprising MS MARCO [3],
Wikipedia [20], TREC CAR [10] and the Washington Post v4.2

In TREC CAsT’19, user utterances may only refer to the information men-
tioned in previous user utterances. Since 2020 [8], utterances may refer to previ-
ous responses given by the system as well, which significantly extends the scope
of contextual information that the system needs to use to understand a request.
TREC CAsT’21 [9] is characterized by the increased dependence on previous
system responses, as well as simple forms of user revealment, reformulation, and
explicit feedback introduced in users’ utterances.

By TREC CAsT’21, a two-step passage ranking architecture has emerged.
A first-pass passage retrieval is usually performed using an unsupervised sparse
model (e.g., BM25), which is followed by re-ranking using a neural model trained
for passage retrieval (e.g., T5 trained on MS MARCO [6]). Additionally, most
systems employ a query rewriting step, where the original query is de-contextuali-
zed to be independent of the previous turns.

2.2 Query Rewriting

The goal of query rewriting is to handle common conversational phenomena such
as omission, coreference [7], zero anaphora, topic change, and topic return [26].

1 https://github.com/iai-group/ecir2023-reproducibility
2 https://trec.nist.gov/data/wapost/

https://github.com/iai-group/ecir2023-reproducibility
https://trec.nist.gov/data/wapost/
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(a) Basic two-stage retrieval
pipeline using a single query
rewriter.

(b) Different query rewriter
for first-pass retrieval and re-
ranking.

(c) Combination of first-pass
retrieval and re-ranking using
the same query rewriting.
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(d) Re-ranking of fused first-pass
results that use different query
rewriters.

(e) Fusion of multiple pas-
sage re-rankings using differ-
ent rewrites.

(f) Few-shot conversational
dense retrieval.

Fig. 1: Pipeline architectures for conversational search (Q+H: raw query and
conversational history; QR: query rewriter; R1: first-pass retriever; R2: re-
ranker; Enc.: encoder; Docs: document collection; Dot prod.: dot product).

Approaches can be broadly categorized into unsupervised, supervised feature-
based, and (weakly-)supervised neural methods. Unsupervised query rewriting
methods expand the original query with terms from the conversation history,
for example, from previous utterances based on BM25 score [30], cosine similar-
ity [25], or other frequency-based signals [16]. Supervised feature-based meth-
ods use linguistic features based on dependency parsing, coreference resolution,
named entity resolution, or part-of-speech tagging [18]. Supervised neural query
rewriting approaches utilize large pre-trained language models, and in particu-
lar generative models such as GPT-2 [24] or T5 model [4, 13, 28]. These models
are fine-tuned on a conversational dataset, such as CANARD [4, 13, 16, 23, 24]
or QReCC [28]. The generated query reformulations may further be expanded
with terms from conversation history [24], with paraphrases [13], or related sen-
tences from semantically related documents [4]. Weakly supervised neural query
rewriting methods aim to fine-tune large pre-trained language models [31] or
term selection classifiers [14] with weak supervision data that is created using
rule-based or self-supervised approaches. The best results are reported using a
combination of term-based query expansion with generative models for query
reformulation [14, 16, 24].

2.3 Pipeline Architectures

Systems participating in TREC CAsT exhibit a wide variety of approaches, not
only in terms of component-level choices but also in terms of the overall ar-
chitectures of their ranking pipelines. The most common choice is a two-stage
retrieval pipeline with a query rewriting module. Different variants of this cas-
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Table 1: Overview of approaches reproduced in this paper.
Query rewriting First-pass retrieval Re-ranking

BaselineOrganizers T5 fine-tuned on CANARD BM25 monoT5

WaterlooClarke T5 fine-tuned on QReCC BM25 with PRF + ANCE mono/duoT5

cade architecture include systems with the same rewriting method used for both
first-pass retrieval and re-ranking [4, 13, 18, 22–24, 28, 31] (Fig. 1a), different
query rewriting modules for both stages [29] (Fig. 1b), or using rewriting only
for first-pass retrieval [12, 29].

More advanced architectures may use a two-stage retrieval pipeline with the
same query rewriter for each stage, but combine the scores obtained from re-
trieval and re-ranking to produce a final ranking [25] (Fig. 1c) or use two different
versions of the rewritten query for first-pass retrieval and a fusion of the ranked
lists for the re-ranking stage [16] (Fig. 1d). Another architecture variant consists
of first-pass retrieval using the rewritten query, followed by a fusion of multi-
ple contextualized passage re-ranking of several different rewrites [14] (Fig. 1e).
An alternative to the retrieve-then-rerank approach is a few-shot conversational
dense retrieval system that learns contextualized embeddings of utterances and
documents in the collection, and scores documents solely using the dot product
of the embeddings [32] (Figure 1f).

3 Selected Approaches

We present the two approaches from TREC CAsT’21 that we aim to reproduce
in this paper: (1) the best performing official baseline provided by the track
organizers’ and (2) the top performing system submitted by participants.3 These
approaches may be regarded as representatives of a strong baseline and of the
state of the art, respectively. Both may be seen as instantiations of the basic two-
stage retrieval pipeline approach (cf. Fig. 1a), with query rewriting, first-pass
retrieval, and re-ranking components, as shown in Table 1. In this section, we
focus on a high-level description of these approaches, based on the corresponding
TREC papers; specific implementation details are discussed in Section 4.

3.1 Organizers’ Baseline

Of the several baselines provided by the track organizers, org auto bm25 t5 was
the best performing run [9]; this will be referred to as the BaselineOrganizers
approach henceforth. The query rewriting component is using T5 fine-tuned on
CANARD for generative query rewriting. The rewriter uses all previous queries
and the three previous canonical responses as context. For first-pass retrieval,
BM25 is used to collect the top 1000 documents from the collection. The docu-
ments are re-ranked with a pointwise (mono) T5 model trained on MS MARCO.

3 More specifically, this is the best performing system that is accompanied by a system
description and can thus be (attempted to be) reproduced.
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3.2 Top Performer: WaterlooClarke

The top-performing documented system was the clarke-cc run by Yan et al.
[28]; this will be referred to as the WaterlooClarke approach henceforth. The
query rewriting component is based on a T5 model that is fine-tuned on the
QReCC dataset [1]. For context, the rewriter uses previously rewritten utterances
and the last canonical result. First-pass retrieval comprises two sub-components:
a sparse and a dense retriever. The sparse retriever utilizes a BM25 with pseudo-
relevance feedback (PRF), with the parameters tuned to maximize recall. PRF
is run over both the target corpus and the C4 corpus.4 The dense retriever is
based on the ANCE approach [27]. Both retrieval systems return the top 1000
documents that are merged into one final ranking. Re-ranking is performed using
a pointwise T5 re-ranker, followed by another re-ranking of the top 50 documents,
using pairwise duoT5 [21].

4 Reproducibility Experiments

In this section, we answer our first research question: Can the organizers’ baseline
and the best performing system at the TREC CAsT’21 be reproduced? We
describe the implementation details of the two systems and discuss their end-to-
end performance with respect to the results reported in the track overview [9].

4.1 Baseline Implementation

We base the implementation solely on the description of the track organizers’
org auto bm25 t5 baseline in the overview paper [9], without resorting to addi-
tional communication with the authors.

The passage collection is indexed using Elasticsearch, using the built-in an-
alyzer for tokenization, stopwords removal, and KStem stemming. For query
rewriting, we use a pre-existing T5 model that has been fine-tuned on the CA-
NARD dataset (castorini/t5-base-canard).5 Our implementation is based
on the Hugging Face transformers library.6 According to [9], the context for the
query rewriter is of the form: q1, q2, . . . , qi−3, ri−3, qi−2, ri−2, qi−1, ri−1, qi, where
qi and ri are the ith raw query and canonical response, respectively. Contexts
exceeding the allowed model input length are not handled. This, however, can
result in trimming the input in a way that the raw query that is to be rewrit-
ten is removed. To increase the quality of the rewriting by ensuring the correct
form of the input and benefiting from previous rewrites, we alternatively use:
q̂1, q̂2, . . . , q̂i−1, trim(ri−1), qi, where q̂i is the ith rewritten query and trim is a
function that cuts the canonical response if the length of the input is longer than
the capacity of the model. For first-pass retrieval, the passages are ranked using
BM25 on a catch all field (concatenating the title and body fields) in the 2021

4 https://huggingface.co/datasets/allenai/c4
5 https://huggingface.co/castorini/t5-base-canard
6 https://github.com/huggingface/transformers

https://huggingface.co/datasets/allenai/c4
https://huggingface.co/castorini/t5-base-canard
https://github.com/huggingface/transformers
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index and on the body field for the 2020 index. We initially used the parameters
reported by the organizers (k1=4.46, b=0.82), but then achieved better results
with the default parameters (k1=1.2, b=0.75). The top 1000 candidates for each
turn are re-ranked using the T5 model introduced by Nogueira et al. [19], which
has been published on Hugging Face (castorini/monot5-base-msmarco).7

4.2 WaterlooClarke Implementation

We base our implementation on the WaterlooClarke group’s TREC paper [28].
Additional information on specific details was obtained from the authors via
email communication and inferred from the implementation made available.8

The approach requires two indices: an approximate nearest neighbor (ANN)
index for ANCE dense retrieval and an inverted index for BM25. The authors
use ANCE’s own implementation9 and a publicly released model checkpoint
(passage ANCE(FirstP)) for the ANN index.† We use Pyterrier’s plugin10 for
creating the ANN index, which is based on the original paper, and allows for
easier integration with other modules in our pipeline. For building the ANN
index we use MS MARCO Passage and TREC CAR collections provided by
the ir datasets package,11 and implement our own generator for the WaPo 2020,
MS MARCO Documents, and KILT collections. No additional preprocessing is
performed when building the dense retrieval index. The inverted index used by
BM25 is the same as in Section 4.1.

The query reformulation step in WaterlooClarke is based on a T5 model
trained on the QReCC dataset [1]. All the previous rewritten utterances and the
canonical response for the last utterance are used as context to reformulate the
current question (i.e., the input is given as: q̂1, q̂2, . . . , q̂i−1, trim(ri−1), qi). If the
length of the input sentence exceeds 512, the answer passage is cut off.† The
authors fine-tune a pretrained t5-base model12 with the training partition of
the QReCC dataset for 3 epochs, using the original test partition as a validation
set.† The train batch size is equal to 2 and the learning rate is 5 × 10−5.† We
use the Simple Transformers library13 for the fine-tuning procedure (as opposed
to PyTorch Lightning14 and Hugging Face transformers used by the authors†).

There are two first-pass rankers involved: (1) sparse retrieval using BM25
with pseudo relevance feedback (PRF) and (2) dense retrieval using ANCE [27].
The final sparse retrieval ranking is a fusion of two rankings.† PRF is applied
on the top 17 documents to expand the query with the top 26 terms; the ex-
panded query is then scored using BM25 to generate the first sparse ranking.

7 https://huggingface.co/castorini/monot5-base-msmarco
8 https://github.com/claclark/Cottontail/blob/main/apps/treccast21.cc
9 https://github.com/microsoft/ANCE
† Missing information provided by the authors in personal communication.

10 https://github.com/terrierteam/pyterrier_ance
11 https://github.com/allenai/ir_datasets
12 https://huggingface.co/t5-base
13 https://simpletransformers.ai/
14 https://www.pytorchlightning.ai/

https://huggingface.co/castorini/monot5-base-msmarco
https://github.com/claclark/Cottontail/blob/main/apps/treccast21.cc
https://github.com/microsoft/ANCE
https://github.com/terrierteam/pyterrier_ance
https://github.com/allenai/ir_datasets
https://huggingface.co/t5-base
https://simpletransformers.ai/
https://www.pytorchlightning.ai/
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Additionally, the authors use the top 16 weighted answer candidates generated
by a statistical question-answering method ran against the C4 corpus to cre-
ate the second ranking (answer candidates are used by BM25).† The first and
the second ranking produced by the sparse retrieval are fused with Reciprocal
Rank Fusion (RRF) [5].† There is no further information disclosed about the
question-answering system used (neither in the paper nor in the GitHub repos-
itory). Therefore, we skip the second ranking in reproducibility and focus on
standard BM25 with PRF. The BM25 parameters are tuned to maximize recall
over manually rewritten questions from previous years. The exact details of this
remain unclear. We tune BM25 parameters on our 2020 and 2021 indices and
take the average of the best parameters found for each year (b=0.45, k1=0.95),
since the parameters used in their code (b=0.45, k1=1.18) gave worse results on
our indices. For query expansion, since the choice of PRF algorithm could not
be resolved, we opted for RM3 [15], which we implemented from scratch.

The results of sparse and dense retrieval are fused to generate the final set of
1000 candidate passages for re-ranking. Since the fusion method is not stated in
the paper, we assume that this step also employs RRF; we utilize the TrecTools
library,15 which implements a RRF as defined in [5].

The re-ranking stage in this approach is based on a pointwise monoT5 re-
ranker (on all candidate passages), followed by a pairwise duoT5 re-ranker (on
the top 50 passages re-ranked by monoT5). The original re-ranking implementa-
tion is based on the Pyaggle library16 with the default model checkpoints. Our
implementation of duoT5 is based on the Hugging Face transformers library and
the castorini/duot5-base-msmarco model published on Hugging Face.17

4.3 Results

Table 2 reports our results on the CAsT’21 collection. Following the official
setup, we consider measures with both binary and graded relevance. The main
measure is NDCG@3; other measures are computed with a rank cutoff of 500.
For binary measures, we apply a relevance threshold of 2.

For the baseline, the results reported in the overview paper [9] are included
verbatim and regarded as the reference, since the raw runfile (org auto bm25 t5)
is not available in the TREC archive. We include results using the original
query rewriting method and reported BM25 parameters (BaselineOrganizers-
QR-BM25), using the improved query rewriter while keeping the reported BM25
parameters (BaselineOrganizers-BM25), and finally using the improved query
rewriter with default BM25 parameters (BaselineOrganizers). We find that the
latest variant performs best; it is still 9% below the reference result in terms of
NDCG@3, but 2% better in terms of Recall@500.

Regarding WaterlooClarke, the performance of our reproduced system is 19%
lower in terms of NDCG@3 and 20% lower in terms of Recall@500 than the

15 https://github.com/joaopalotti/trectools
16 https://github.com/castorini/pygaggle
17 https://huggingface.co/castorini/duo5-base-msmarco

https://github.com/joaopalotti/trectools
https://github.com/castorini/pygaggle
https://huggingface.co/castorini/duo5-base-msmarco
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Table 2: Reproducibility experiments on the TREC CAsT’21 dataset.
Approach R@500 MAP MRR NDCG NDCG@3

BaselineOrganizers@TREC’21 (in [9]) 0.636 0.291 0.607 0.504 0.436

BaselineOrganizers-QR-BM25 0.5632 0.2268 0.4947 0.4317 0.3457

BaselineOrganizers-BM25 0.5894 0.2546 0.5405 0.4672 0.3966

BaselineOrganizers 0.6472 0.2628 0.5354 0.4885 0.3968

WaterlooClarke@TREC’21 (in [9]) 0.869 0.362 0.684 0.640 0.514

WaterlooClarke@TREC’21 (runfile) 0.8534 0.3494 0.6626 0.6240 0.4950

WaterlooClarke reproduced by us 0.6915 0.2864 0.5712 0.5176 0.4151

official results reported for this approach. The discrepancy in the results is most
likely caused by the lack of the C4-based question-answering step performed in
first-pass retrieval. This element of the system is not sufficiently described in the
paper nor has been resolved via personal email communication. Surprisingly,
we observe discrepancies between the official results reported in the overview
paper and a direct evaluation of the clarke-cc runfile taken from the TREC
archive (cf. rows 5 vs. 6 in Table 2). The latter results are lower, with a relative
drop of almost 4% in NDCG@3, which is a non-negligible difference. We cannot
explain this discrepancy; however, it also puts into question the results reported
in the track overview. When comparing our reproduced results against their
runfile, the relative differences are under 16% and 19% in terms of NDCG@3
and Recall@500, respectively.

Overall, according to the track overview paper, the relative differences be-
tween BaselineOrganizers and WaterlooClarke are 18% and 37% in terms of
NDCG@3 and Recall@500, respectively (cf. rows 1 vs. 5 in Table 2). However,
the respective differences in our reproduced approaches are 5% and 7% (cf. rows
4 vs. 7 in Table 2). Moreover, these differences are no longer statistically sig-
nificant, based on a paired t-test with p < 0.05. The same test does indicate
significant differences when performed against the WaterlooClarke runfile.

4.4 Summary

In summary, neither approach could be fully reproduced due to key information
missing. In the case of BaselineOrganizers, the specifics of the models used for
query rewriting and re-ranking were lacking, and the formulation of input se-
quences for query rewriting was underspecified (esp. with regards to exceeding
the length limits of the model). As for WaterlooClarke, the complexity of the sys-
tem and shortages in technical details made it impossible to fully implement the
system. Most notably, the involvement of a question-answering system for sparse
retrieval is not even mentioned in the paper. We do want to acknowledge the
kind, helpful, and open communication by the authors via email, which allowed
us to resolve questions around the query rewriting model and its parameters,
the BM25 and PRF parameters used, and the rank fusion method employed.
Nevertheless, after several rounds of email exchanges, we are still missing details
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Table 3: Variants of a two-stage retrieval pipeline on TREC CAsT’20 and ’21.
Approach R@1000 MAP MRR NDCG NDCG@3

TREC CAsT 2020

T5 CANARD + BM25 + monoT5 0.5276 0.2191 0.5457 0.4353 0.3789

T5 QReCC + BM25 + monoT5 0.5100 0.2056 0.5106 0.4065 0.3618

T5 CANARD + ANCE/BM25 + mono/duoT5 0.6781 0.2540 0.5512 0.5027 0.4052

T5 QReCC + ANCE/BM25 + mono/duoT5 0.6449 0.2443 0.5357 0.4804 0.4061

T5 CANARD + ANCE/BM25/PRF + mono/duoT5 0.6878 0.2555 0.5541 0.5063 0.4086

T5 QReCC + ANCE/BM25/PRF + mono/duoT5 0.6608 0.2451 0.5355 0.4840 0.4052

Approach R@500 MAP MRR NDCG NDCG@3

TREC CAsT 2021

T5 CANARD + BM25 + monoT5 0.6472 0.2628 0.5354 0.4885 0.3968

T5 QReCC + BM25 + monoT5 0.6018 0.2530 0.5369 0.4670 0.3933

T5 CANARD + ANCE/BM25 + mono/duoT5 0.7259 0.2886 0.5575 0.5316 0.4068

T5 QReCC + ANCE/BM25 + mono/duoT5 0.6799 0.2843 0.5702 0.5135 0.4159

T5 CANARD + ANCE/BM25/PRF + mono/duoT5 0.7306 0.2915 0.5573 0.5330 0.4061

T5 QReCC + ANCE/BM25/PRF + mono/duoT5 0.6915 0.2864 0.5712 0.5176 0.4151

about the PRF algorithm, the question-answering system employed, the exact
approach used for tuning the BM25 parameters, the preprocessing employed for
the inverted index, and the method used for combining sparse and dense rank-
ings. It is also worth noting that while BM25 parameters were shared for both
approaches, those parameters were not the optimal ones for us, which is likely
due to differences in document preprocessing. It, however, means that BM25
parameters alone, without further details on preprocessing or collection statis-
tics, are only moderately useful. We shall reflect more generally on some of these
challenges and possible remedies in Section 6.

5 Additional Experiments

We have reproduced two approaches, BaselineOrganizers and WaterlooClarke,
which follow the same basic two-stage retrieval pipeline (cf. Fig. 1a), but differ
in each of the query rewriting, first-pass retrieval, and re-ranking components.
We experiment with different configurations of this basic pipeline to understand
which changes contribute most to overall performance (Section 5.1). Addition-
ally, we consider a different pipeline architecture (Section 5.2). In both sets of
experiments, we are interested in the generalizability of findings, therefore we
also report results on the TREC CAsT’20 dataset. (Note that the rank cut-off
for 2020 collection is 1000, while for 2021 it is 500.)

5.1 Variants of a Two-Stage Retrieval Pipeline

In this experiment, we gradually switch out the components of a baseline sys-
tem (BaselineOrganizers) with components of a state-of-the-art system (Water-
looClarke). The results are presented in Table 3; the first and last rows within
each block correspond to BaselineOrganizers and WaterlooClarke, respectively.
Our observations are as follows. First, when changing the dataset used for train-
ing the T5-based query rewriter from CANARD to QReCC (rows 1 vs. 2, 3
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Table 4: Performance of query rewriting approaches with different variants of
the two-stage pipeline on the TREC CAsT’20 and ’21 datasets. Highest scores
for each year are in boldface.

Recall NDCG@3 Recall NDCG@3

R1

R2
T5 CANARD T5 QReCC

T5 CANARD
2020: 0.6878 2020: 0.4086 2020: 0.6878 2020: 0.3923

2021: 0.7306 2021: 0.4061 2021: 0.7267 2021: 0.4166

T5 QReCC
2020: 0.6608 2020: 0.4086 2020: 0.6608 2020: 0.4052

2021: 0.6879 2021: 0.4176 2021: 0.6915 2021: 0.4151

vs. 4, and 5 vs. 6 in Table 3) we observe a noticable drop (3%–7%) in terms
of recall, with smaller differences in NDCG@3 (below 2%, with one exception).
Second, using more advanced retrieval methods (ANCE/BM25 instead of BM25
for first-pass ranking and mono/duoT5 instead of monoT5 for re-ranking; rows
1 vs. 3 and 2 vs. 4 in Table 3) does yield consistent improvements across metrics
and datasets: +12%–29% in recall and +3%–12% in NDCG@3. Finally, using
pseudo relevance feedback for first-pass retrieval (rows 3 vs. 5 and 4 vs. 6 in Ta-
ble 3) results in small but consistent improvements in terms of recall (1%–2%)
with negligible differences in NDCG@3 (<1%). It should be noted that none of
the above differences are statistically significant, thereby the results are merely
indicative. However, in terms of overall trends, our results are in line with the
tendencies reported by Yan et al. [28]. Namely, that adding PRF and combining
sparse and dense retrieval methods for first-pass retrieval improves performance.

5.2 Using a Different Pipeline Architecture

It is clear that query rewriting has a direct impact on both ranking steps: first-
pass retrieval (R1) and re-ranking (R2). Still, it remains to be seen whether the
two stages are impacted the same way. The basic two-stage retrieval pipeline
(cf. Fig. 1a) uses the same query rewriter for both ranking stages and therefore
cannot be used to answer this question. We thus switch to a different pipeline
architecture—one that uses a different query rewriter component for R1 and R2,
but is identical to the basic pipeline in the ranking components (cf. Fig. 1b).

Table 4 presents the results for the possible four-way combinations of query
rewriters, T5 CANARD and T5 QReCC, and ranking stages, R1 and R2. The
ranking components follow the WaterlooClarke approach (i.e., using T5 QReCC
for both R1 and R2 corresponds to the last row in Table 3). The results reveal
some interesting tendencies that generalize across both datasets (even though
the differences are not statistically significant). Using T5 CANARD for first-pass
retrieval results in the highest recall. However, the overall best combination in
terms of final ranking (NDCG@3) is when T5 QReCC is employed in first-pass
retrieval and T5 CANARD is used in re-ranking. Overall, we observe meaningful
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relative improvements for recall (up to 6%) and negligible improvements for
NDCG@3 (≤1%) on both datasets over the WaterlooClarke approach.

6 Reflections and Conclusions

In this work, we have attempted to reproduce approaches for the task of con-
versational passage retrieval, in the context of TREC CAsT. TREC papers can
range anywhere between vague system descriptions to full-fledged research pa-
pers, which can make reproducibility a real challenge; this has certainly been the
case for this study. We acknowledge that reproducibility is not a requirement for
TREC submissions. Still, since they are often used for reference comparison in
terms of absolute system performance on a given test collection (cf. [2]), it is
worth considering how easy or difficult it is to reproduce them. Specifically, we
have selected two approaches for our study: the best performing baseline by the
track organizers and the best performing participant submission (that was ac-
companied by a paper) from the 2021 edition of TREC CAsT. We have decided
against personal communication with the track organizers (thus implicitly sub-
jecting them to a higher virtual bar-of-standard) while making a best effort to
resolve any missing details with the participant team over email.

Overall, our reproducibility efforts have met with moderate success. Surpris-
ingly, we have managed to come closer to reproducing the participant’s submis-
sion (WaterlooClarke) than the organizers’ baseline. In the case of the former,
there is a missing sparse retrieval component that can well explain the difference.
As for the organizers’ results, the discrepancies between the reported results in
the track overview paper and the actual runfiles found in the TREC archive
would be worth a follow-up investigation. Generally, key missing information
includes the names of specific algorithms and models used, and detailed-enough
descriptions of procedures of constructing inputs to neural models and ways of
obtaining models’ parameters. We wish to note that sharing model parameters
in some cases is not enough; consider, e.g., the simple case of BM25, where the
length normalization parameter alone is not meaningful if collection statistics
markedly differ due to how the collection is preprocessed. Given that multi-
stage ranking architectures are common at TREC CAsT, but also beyond that,
sharing intermediate results from the different components would be immensely
valuable. These could include the rewritten or expanded queries, set of candidate
document IDs, and intermediate document rankings. Sharing them would not
only support reproducibility but also facilitate component-level evaluation.

Since the two reproduced systems follow the same basic two-stage retrieval
pipeline, we have also performed additional experiments to study different config-
urations of this pipeline and have made some observations regarding the contri-
butions made by the various components. Moreover, we have reported on exper-
iments with different combinations of query rewriting methods using a different
retrieval pipeline, which have yielded some novel findings. Further comparisons
of different pipeline architectures would be an especially interesting direction for
future work.



From Baseline to Top Performer 13

Post-acceptance communication with TREC CAsT organizers. Upon acceptance
of this paper, we attempted to clarify the discrepancies between the results in this
paper and those reported in the track overview via email communication with the
track organizers. There is a difference in tooling: they used Pyserini18 for build-
ing the index, while we used Elasticsearch. Differences in collection preprocessing
(tokenization, stemming, stopword removal, etc.) may contribute to the gap in
the results. Regarding the runfile, we were pointed to the track’s GitHub repos-
itory19 containing the raw runfile (org automatic results 1000.v1.0.run).
However, evaluating this runfile against the official qrels still yields results differ-
ent from those reported in the track overview paper (in parentheses): Recall@500
is 0.623 (vs. 0.636), MAP is 0.282 (vs. 0.291), and NDCG@3 is 0.424 (vs. 0.436).
This is “in alignment” with the case of the WaterlooClarke (clarke-cc) run-
file, in the sense that there is a mismatch between the numbers reported in the
track overview paper and the evaluation of the actual runfiles (with the latter
being lower). At the time of writing, this issue has not been resolved. We plan
to update our online repository if new findings become available.
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