
in the field of study Computer Science and Information Systems

and specialisation Artificial Intelligence Methods

Preparation of Sets and Machine Learning Models for Recognizing
Names of Literary Characters

Weronika Łajewska
student record book number 276952

thesis supervisor

Anna Wróblewska, PhD Engineer

WARSAW 2021

... ...

supervisor’s signature author’s signature

Abstract

Preparation of Sets and Machine Learning Models for Recognizing Names of Literary

Characters

Natural Language Processing (NLP) is an area of research that can be extremely useful

in analyzing long texts, such as novels. One of the essential components of novels are their

protagonists. Recognizing and identifying literary characters in texts is a first step for detecting

relationships between them, analysing individual characters, creating timelines of events, etc.

This research investigates the problem of recognizing people in novels and attempts to anno-

tate them to allow more detailed analysis of the novels. The prepared tool is used to create a

corpus of annotated novels.

The process of identification of literary characters in a text was divided into two main stages.

The first one focused on finding named entities (NE) of category person. It took advantage of

Named Entity Recognition (NER) models. Since standard NER models are not prepared to be

used for novels, they must have been fine-tuned for this specific purpose. The second stage was

responsible for matching each recognized NE of category person with a full name of the literary

character associated with it. The matching process was based on approximate text matching.

The result of the matching process was stored in the form of the tag being a full name of the

protagonist put on the NE. These two stages were encapsulated in the functionality of a prepared

tool called protagonistTagger.

The analysis of the performance of protagonistTagger on thirteen novels shows that the tool

achieves both the precision and the recall above 80% in case of almost all analyzed novels. The

performance of the tool is strongly dependent on the type of analyzed novel. Both metrics vary

even by twenty percentage points in case of some novels. It is shown that the complexity, literary

genre, number of literary characters and the complexity of the names of literary characters

influence the tool’s performance, especially during the second stage.

Keywords: Natural Language Processing (NLP), Named Entity (NE), Named Entity

Recognition (NER), Approximate Text Matching

Streszczenie

Przygotowanie Zbiorów oraz Modeli Uczenia Maszynowego Rozpoznających Bohaterów w

Tekstach Literackich

Przetwarzanie języków naturalnych jest dziedziną badań, która może zostać wykorzystana

podczas analizowania złożonych tekstów literackich, takich jak powieści. Jednym z najistotniej-

szych elementów każdej powieści są jej bohaterowie.

Umiejętność automatycznego rozpoznawania i identyfikacji bohaterów w tekście pozwoli na

wykrywanie relacji między bohaterami, tworzenie planu wydarzeń, przeprowadzenie analizy po-

szczególnych bohaterów, itd.

Podczas moich badań przeanalizowałam problem rozpoznawania jednostek nazewniczych

(eng. named entities, NE) z kategorii osoba oraz stworzyłam narzędzie do ich anotacji w spo-

sób umożliwiający dalszą analizę tekstów. Narzędzie to zostało użyte do stworzenia korpusu

zaanotowanych powieści.

Proces rozpoznawania bohaterów w tekście został podzielony na dwa główne etapy. Pierwszy z

nich dotyczy znajdowania NE z kategorii osoba bazując na gotowych modelach Named Entity Re-

cognition (NER). Modele te musiały zostać dostrojone, ponieważ ich standardowe wersje osiągają

na powieściach stosunkowo słabe wyniki. Drugi etap dotyczył przyporządkowywania każdej

rozpoznanej NE z kategorii osoba pełnego imienia bohatera, którego dotyczyła. Proces przy-

porządkowywania bazował na approximate text matching. Wynik procesu przyporządkowywania

przechowywany był w formie taga przypisanego NE i będącego pełnym imieniem bohatera. Dwa

powyższe etapy zostały zaimplementowane tworząc narzędzie nazwane protagonistTagger ’em.

Analiza wyników protagonistTagger ’a przeprowadzona dla trzynastu powieści pokazuje, że

narzędzie osiąga wyniki przekraczające 80% w przypadku obu metryk: precision i recall. Wyniki

narzędzia są silnie uzależnione od rodzaju analizowanej powieści. Wartości obu metryk mogą

się różnić nawet o dwadzieścia punktów procentowych w przypadku niektórych powieści. Udało

mi się wywnioskować, że skuteczność, szczególnie podczas drugiego etapu, jest ściśle związana

ze złożonością powieści, jej gatunkiem, liczbą bohaterów oraz złożonością nadanych bohaterom

imion.

Słowa kluczowe: przetwarzanie jzyków naturalnych, jednostki nazewnicze (ang. named

entity), rozpoznawanie jednostek nazewniczych (ang. named entity recognition), approximate

text matching

Warsaw,

Declaration

I hereby declare that the thesis entitled „Preparation of Sets and Machine Learning Models

for Recognizing Names of Literary Characters”, submitted for the Master degree, supervised by

dr inż. Anna Wróblewska, is entirely my original work apart from the recognized reference.

..

Contents

Introduction . 11

1. State-of-the-art Research on Literary Text Analysis 15

1.1. Annotating Literary Characters . 15

1.1.1. Project Gutenberg – Literary Texts Corpus 15

1.1.2. GutenTag – Tool for Analysis of Texts in PG 15

1.1.3. Detecting Characters in Literary Texts . 16

1.2. Further Possibilities . 17

1.2.1. Detecting Relationships Between Literary Characters 18

1.2.2. Sentiment Analysis . 20

2. Theoretical Background . 23

2.1. Metrics used for evaluating NLP models . 23

2.1.1. Precision and Recall . 23

2.1.2. F measure . 24

2.2. Named Entity Recognition . 24

2.2.1. Knowledge-based NER Systems . 25

2.2.2. Unsupervised and Bootstrapped NER Systems 27

2.2.3. Feature-engineered Supervised NER Systems 28

2.2.4. Feature-inferring Neural Network Systems . 29

2.2.5. Summary of Approaches to NER . 34

2.3. Approximate Text Matching . 35

2.4. Programming Libraries and Tools . 37

3. My Research Process and Encountered Problems 38

3.1. Imperfections of NER in Novels . 38

3.1.1. NER Model Performance . 38

3.1.2. Not Recognized Named Entities . 39

3.2. Problems in Assigning Recognized Named Entities to Specific Literary Characters 40

3.2.1. Regular and Partial String Matching . 41

3.2.2. Handling Diminutives of Literary Characters 41

3.2.3. Named Entities Preceded with Personal Title 42

3.3. Summary of the Most Important Conclusions and Findings 44

4. My Approach . 46

4.1. Initial Corpus with Plain Novels’ Texts . 46

4.2. Lists of Full Names of the Protagonists . 46

4.3. Recognizing Protagonists Appearances Using NER 47

4.3.1. Fine-tuning NER Model – Outline . 47

4.3.2. Training Sets for NER Fine-tuning . 48

4.3.3. Fine-tuning NER Model . 49

4.3.4. Testing Sets for NER Fine-tuning . 50

4.3.5. Fine-tuned NER Model Performance . 50

4.4. Using Matching Algorithm . 54

4.5. ProtagonistTagger Workflow . 57

4.6. Evaluating Annotations Done by the protagonistTagger 57

4.7. Creating a Corpus of Annotated Novels . 57

5. Evaluation of the ProtagonistTagger . 59

5.1. Requirements for the protagonistTagger . 59

5.2. Testing Dataset . 60

5.3. Gold Standard Annotations . 60

5.3.1. Ambiguities . 61

5.4. ProtagonistTagger ’s Results . 62

5.4.1. Discussion . 63

5.4.2. Performance Dependency on the Testing Set Used 64

5.4.3. ProtagonistTagger Performace vs. NER Performance 64

5.4.4. ProtagonistTagger Performace vs. Number of Literary Characters in a Novel . 65

5.5. Linguistic Analysis of Tested Novels . 67

5.5.1. Performance Dependency on the Genre and Type of Text 69

5.6. Summary of the Performance Analysis . 71

6. Conclusions . 72

7. Future Work . 75

Introduction

Novels are a fascinating field of study, not only for philologists or literary scholars but also

for scientists involved in Natural Language Processing (NLP). They are an excellent repository

of knowledge about the language, people and their relations, historical events, places, expected

behaviours, etc. Analysis of novels can pertain to the detection of the relations between pro-

tagonists, creating summaries, locations detection, creating timelines of events, and many more

(see Section 1.2). A corpus of novels is the first step in completing these tasks. High-quality data

in the corpus with proper annotations make the further work much more manageable.

The first type of annotations which is crucial when discussing novels is this related to protag-

onists. Marking all appearances and all references to the novel’s main literary characters seems

to be a handy feature to have in the corpus. Due to many ambiguities appearing in novels, their

complex structure, and often a broad spectrum of protagonists, this task is not as easy as it

seems. All these problems make the annotation of the literary characters much more complicated

and sophisticated.

Adequate protagonists’ annotations are useful in further and more precise analysis of novels. It

is not a straightforward task to decide how these annotations should be specified. Unfortunately,

in some cases, it may be not enough to annotate each literary character with a general tag person.

In order to be able to analyse the novel on deeper levels, we need contradistinction between

protagonists. The most desired way is to have a separate tag for each protagonist and assign

it to this literary character’s appearance in a text. Each tag ideally should contain a full name

of the protagonist along with a personal title. Tracking down full names of literary characters

sometimes may not be easy. In the novels, it is often the case that only a first name occurs or only

a surname preceded with a personal title. However, high-quality data should always be a priority.

The possibilities that protagonists’ annotations offer are described in details in Chapter 1.

The desired outcome of the project is a reasonably big corpus with novels. Every protagonist

in each novel should be annotated with his/her proper name. Ideally, the label is a full name

of the literary character preceded with the proper personal title if needed. An example of such

annotated text is given in Table 0.1.

Generally, the prepared tool is supposed to work automatically with a list of protagonists’

11

"Her disappointment in Charlotte«Charlotte Lucas» made her turn with fonder regard to her sis-

ter, of whose rectitude and delicacy she was sure her opinion could never be shaken, and for whose

happiness she grew daily more anxious, as Bingley«Charles Bingley» had now been gone a week

and nothing more was heard of his return. Jane«Jane Bennet» had sent Caroline«Caroline Bingley»

an early answer to her letter and was counting the days till she might reasonably hope to hear

again. The promised letter of thanks from Mr. Collins«Mr William Collins» arrived on Tuesday,

addressed to their father, and written with all the solemnity of gratitude which a twelvemonths

abode in the family might have prompted."

Table 0.1: An exemplary text extracted from novel Pride and Prejudice by Jane Austen. Correct

tags are written in the subscript of each recognized named entity of category person.

names and a text of the novel given as an input. Let us call this tool a protagonistTagger just

for reference. An indirect outcome of the project is a model for recognizing appearances of

protagonists in a novel. This model is based on Named Entity Recognition (NER).

General Project Workflow

The process of creating the corpus of annotated novels and the protagonistTagger tool com-

prises several stages (see Figure 0.1). Each stage is, generally speaking, a separate task with

different assumptions. The main stages are as follows:

1. Gathering an initial corpus with plain novels’ texts without annotations.

2. Creating a list of full names of all protagonists for each novel in the initial corpus. These

names are the predefined tags that will be used in further steps for annotations.

3. Recognizing named entity of category person in the novels’ texts in the initial corpus.

Training NER model from scratch for this specific problem is not reasonable due to the

amount of time and computing power required. It is possible to use some pre-trained NER

model and fine-tune it using a sample of manually annotated data. The NER mechanism

evaluation is done on a testing set extracted from the full texts of novels. The task of

fine-tuning NER model is quite complex and may include several iterations.

4. Each named entity of category person, recognized by NER in the previous step, is a po-

tential candidate to be annotated with one of our tags predefined in step 2. At this point,

an algorithm (let us call it matching algorithm for reference), based on approximate string

matching, is used to choose from the predefined tags the one that matches most accurately

the recognized named entity.

12

Introduction

corpus with plain novels’ texts

fine-tuning NER

NER for named entities of category person

matching each recognized named entity with proper tag

lists of tags for novels

evaluation of matching correctness

using protagonistTagger to create a corpus of annotated novels

Figure 0.1: Simplified process of creating the corpus of annotated novels and the protagonist-

Tagger tool.

5. The annotations done by the matching algorithm are evaluated according to their accuracy

and correctness.

6. The protagonistTagger (fine-tuned NER + matching algorithm) is used to annotate more

novels in order to create the corpus of annotated novels.

The two most interesting parts of the procedure are fine-tuning NER from step 3 and the

matching algorithm from step 4.

The analysis of NER in novels is a fascinating field of study because there are plenty of

surprising literary characters in the novels. For example, The creature in Frankenstein by Mary

Shelley is one of the main protagonists in the novel. However, it is difficult to blame the NER

model for not recognizing it as a person. Many nuances need to be considered in order to achieve

the satisfying performance of NER in novels.

The process of creating matching algorithm offers no fewer surprises. The method is about to

mark all protagonists in a given text with a proper tag, having given the list of tags predefined for

each novel. Creating this algorithm required an in-depth analysis of the problem of identifying

protagonists in novels. Of course, it is possible to read all the novels in the corpus and tag all the

13

protagonists manually. However, it requires a tremendous amount of time and many annotators’

engagement. Novels, being rather long and complex texts, are not suitable for such arduous

work.

In a real-world situation, while reading a novel from the very beginning, we do not have any

problems figuring out which protagonists are mentioned in the following sentences. However,

when we take a random sentence from the novel, even having read the whole text before, it may

be challenging to say which protagonist is being considered.

In novels, there are many ambiguities which are not apparent at the outset. For example,

there may be a whole family with the same surname, let us say, Smith. In a novel, a protagonist

named Mr Smith is mentioned. How can we say if he is John Smith - a son or Edward Smith -

a father. It is only one of the most common problems.

While analyzing some exemplary novels, one can encounter many more ambiguities, and some

of them are handled in the matching algorithm. The whole research process, along with the most

interesting problems encountered on the way, is described in Chapter 3.

14

1. State-of-the-art Research on Literary Text Analysis

Literary texts analysis has been performed for centuries by humanists and linguists in a

manual, arduous way. Now, this field of study is offered a brand new perspective thanks to digital

literary studies. It is still a new and not fully discovered area. Indeed, it can positively influence

the study of literature. Computational linguistics makes tasks such as in-depth statistical analysis

of literary texts much more comfortable and more precise. There already exist many projects

dedicated to literary studies.

The first part of this chapter presents a brief overview of the most impressive projects con-

nected with the analysis of novels and the problem of annotating literary characters. Whereas

the second part of the chapter focuses on the possibilities in novels analysis connected with

literary characters’ annotations.

1.1. Annotating Literary Characters

1.1.1. Project Gutenberg – Literary Texts Corpus

Creating a corpus of digital texts is the first step in computational linguistics. The most

popular library of free eBooks is Project Gutenberg (PG). It offers a vast collection of texts of

various kinds, such as fiction novels, collections of poetry, dramas, cookbooks, bibliographies,

dictionaries, etc. The primary purpose of the project is to grant easy access to cultural works to

as many people as possible for free. The majority of classical works of English literature can be

found in this archive [21].

1.1.2. GutenTag – Tool for Analysis of Texts in PG

GutenTag [5], [20] is a software tool offering NLP techniques for the analysis of literary texts

from PG. GutenTag has three main functionalities:

• Corpus reader which handles the inconsistent formatting and structure of texts in the

corpus. This component makes it possible to work on plain texts, taking care of extra

spacing, headings, references to illustrations, prefaces, quotations, etc.

15

1. State-of-the-art Research on Literary Text Analysis

Figure 1.1: Exemplary statistical analysis of the text of Pride and Prejudice by Jane Austen [19]

• Subcorpus filters which enables choosing a subset of interest of all texts available in PG.

The information contained within the Project Gutenberg or obtained from some additional

resources helps to identify a relevant subcorpus of interest.

• Tagging which, based on different tags specified by a user, performs a statistical analysis

of the chosen subcorpus. Tags offered by the tool include single tokens, part-of-speech

(POS), structural elements such as chapters, quoted speech.

GutenTag is an advanced tool offering tagging feature. Nevertheless, it does not support an-

notation of literary characters in the desired way. Even though the NER is used in order to

identify the main literary characters, the information gained this way is used only for statisti-

cal measures. There is no advanced mechanism of recognizing specific literary characters and

matching them with their full names. GutenTag offers a wide range of standard textual metrics

(exemplary output in Figure 1.1). Metrics connected with dialogues are computed based on the

identification of structural elements such as quoted speech. GutenTag tool enables annotations

with tag said and identification of the characters to whom the quotation can be assigned. An-

other example of a provided metric is lexical density. It is based on build-in lemmatization and

POS tagging components of GutenTag.

1.1.3. Detecting Characters in Literary Texts

As the problem of identification of literary characters in a text is a first major task in text

analysis, many approaches have already been proposed and tested.

Clustering noun phrases

One of the methods is proposed as a part of the project devoted to extracting social network

from literary texts [15]. It assumes that the noun phrases recognized in the text by NER can

16

1.2. Further Possibilities

be clustered into groups referring to the same person. They are sets of co-referents for the same

named entity. Coreferent is, for example, the token Elizabeth somewhere in the text of the novel

Pride and Prejudice that corresponds to the literary character entity Elizabeth Bennet.

A similar approach to the problem of identifying characters is presented in work devoted to

inferring latent character types in English novels [3]. The main goal of the project is to recognize

a set of character types in an unsupervised way from a large corpus of novels. The method used

there to detect characters is also based on character clustering. Unfortunately, this method, in

the form proposed in the paper, may not fully cover cases of protagonists with the same name.

It may also have problems distinguishing between males and females with the same surname.

For complex texts, the basic method of characters clustering can be not enough.

Graph Representation

Another method [36] is based on representing characters using a graph, where each node cor-

responds to a name found using NER and edges connects nodes referring to the same character.

In the first step, the method links all nodes by edges using i.a. coreference resolution, names

variations and lists of hypocorisms. Then a set of heuristics is used in order to identify pairs pro-

hibited from being connected and removing corresponding edges. This transformation is visible

in Figure 1.2. The next step attempts to identify entities that have not been recognized by the

NER. It is done using a technique aiming at uncovering prototypical characters behaviours from

the novels themselves [36]. The technique is inspired by semantic predicates based on creating a

set of verbs-and-dependency pairs. This set of predicates is then used to verify if a given noun

appears with the verb in a defined dependency relation. If it is the case, it is categorized as a

literary character in the novel.

This method of detecting characters is much more advanced than the previous one and

has better performance. However, it aims at recognizing all literary characters, even minor or

episodic characters, which are not introduced with a name. In many application, such precision

is unnecessary. In the analysis of literary texts, it is usually desired to focus on a group of main

characters. Therefore other annotations are redundant.

1.2. Further Possibilities

The analysis of literary texts is very promising and offers many possibilities. Being able to

identify characters in unstructured texts is the first step in numerous tasks connected with rep-

resenting and interpreting narratives. This section presents an overview of possible applications

17

1. State-of-the-art Research on Literary Text Analysis

Figure 1.2: Illustration of a process of detecting characters in texts using graph representation

[36].

of characters recognition and annotation mechanism along with state-of-the-art research done

in this field.

1.2.1. Detecting Relationships Between Literary Characters

The narrative can be modelled from two perspectives in the novel, either the events or the

characters appearing in the text. Usually understanding relations between literary characters

is the first choices when the analysis of literary texts is considered. It is caused by the fact

that characters can be detected more easily than events. Understanding characters relationships

provide in-depth knowledge about the novel and ultimately contains information not stated

explicitly in it. The ability to model relationships between characters can also be beneficial

while analysing political texts, news, articles. Many different approaches to this problem have

already been proposed.

Relationships Based on Dialogue Interactions

A famous work devoted to extracting social networks from novels attempts to model social

conversations that occur between characters in a form of a network [15]. The network is derived

from dialogue interactions, and the method focuses on determining whether pairs of characters

are involved in conversations and how often it happens. A visualisation of such exemplary social

network is presented in Figure 1.3. The research presented in this work is focused on the relation

between the interactions of the characters in a given novel and its setting (urban or rural). It

may be worth checking whether higher precision in identifying characters improves the results

and leads to some other conclusions.

18

1.2. Further Possibilities

Figure 1.3: Visualisation of social network generated for the text of the novel Mansfield Park by

Jane Austen [15].

Detecting Evolving Relationships

While reading any novel, it is easy to notice that literary characters and their relationships

evolve with the progress of the novel. Analysis of fixed relations between them may not suffice or

sometimes may be even impossible. Therefore some research concerning the evolution of these

relations has been performed in projects [7], [6]. Both projects aim to model dynamic relation-

ships between pairs of characters by detecting relationships sequences in data (an example is

given in Figure 1.4). The main drawback of this approach is that the analysed data has to be

pre-processed. The frameworks are tested only on narrative summaries with a pair of characters

appearing in it. Additionally, the data needs to be labelled. Having the whole text of the novel

annotated with all characters names it may be possible to broaden the idea presented in the

project and extend it to analysing whole parts of text connected with a pair of characters rather

than only summaries of the novel.

Social Events

A fascinating approach is presented in a paper devoted to social network analysis of Alice in

Wonderland [1]. The idea is to create a network analysis of the novel in which links between

characters are so-called social events. Such analysis unveils the roles of characters in the story.

Different types of network help to analyze different aspects of the text. The main drawback of

19

1. State-of-the-art Research on Literary Text Analysis

Figure 1.4: The overview of dynamic changes in the relationship between two characters: Tom

and Becky. (+) stands for cooperative character of the relationship, whether (-) stands for non-

cooperative [7].

the proposed solution is that it is using hand-annotated text with well-defined social events.

The possible and very promising extension of the method may be creating an automatic mech-

anism annotating social events. It seems to be much easier when we have a text with annotated

characters.

1.2.2. Sentiment Analysis

Another general area of research while considering computational literary study is sentiment

analysis [24]. It includes among the others classification of literary texts based on emotions they

convey, emotion-based character analysis and character network construction. Some of the most

interesting examples of sentiment analysis connected with characters detection are presented in

this section.

Sentiment-based Literary Texts Classification

Sentiment-based literary texts classification attempts to discover a literary genre through

sentiment analysis. An exciting example of such analysis tries to represent a plot of a story

in the form of an emotional arc. The x-axis of this graph represents a time point in a story,

whereas the y-axis represents the measure of emotional content connected with events of the

story. Events can be either favourable or unfavourable, represented respectively in the form of

peaks and valley on the graph [28] (see Figure 1.5). In this research, it is proven that there

are six types of emotional arc representing a story. The authors of the analysis are proposing

an extension of the method which could analyze separate characters through time in a story. It

would require the ability to recognize which parts of the story are associated with this character.

Therefore characters detection may be beneficial here.

Another research connected with literary texts classification takes into consideration a type

20

1.2. Further Possibilities

Figure 1.5: The visualization of an emotional content of Wuthering Heights done using a method

of emotional arcs [28].

of an ending of a story and tries to classify it as happy or non-happy [41]. The situation of

the main character is being monitored through the story. If it improves or remains favourable

for the main protagonist, the story is classified as the one with a happy ending. It may be

interesting to investigate the ending of the story for other characters appearing in the texts. It

can be achieved by analyzing parts of the text connected with this character. Here again, a good

characters detection mechanism can be useful.

Characters’ Analysis

Understanding the literary characters and being able to describe them is one of the biggest

challenges of literary analysis. Characters can provide the reader with the majority of the most

crucial information about the storyline itself. Nevertheless, literary characters’ analysis is a very

demanding and complex task. The most basic approach to describing characters is by their role in

the story, for example, hero, princess, villain. This approach has been investigated among others

in the domain of folktales [18]. The authors of the work aimed at determining the relationships

of a character in a tale, as well as finding its role in the story. The characters were divided into 9

different intersecting types. It was assumed that it is possible for a character to be at the same

time a positive and negative protagonist (have two roles assigned). The methods presented in

the project are based mainly on NLP and reasoning on domain ontologies.

What is worth mentioning is that a role in a story provides relatively few information about

the personality of a character and his nature. Especially in cases when a character has multiple

different roles assigned in a given story. Determining the personality of a character is therefore a

21

1. State-of-the-art Research on Literary Text Analysis

Figure 1.6: Frequency word clouds for two characters descriptions (predicatives and adverbs)

extracted from novels [16]. The left cloud corresponds to Master Yoda from the Star Wars,

whereas the right cloud corresponds to Sansa Stark from Game of Thrones.

very challenging task. It was attempted in a project [16] that is based on the psychological Five-

Factor Model of personality [14]. The authors tried to perform personality profiling using the

automated classification of personality traits. They wanted to answer a question about literary

character’s extraversion (whether he is primarily an introvert or an extrovert). They prepared

and evaluated three different machine learning models:

• model based on direct speech in texts attempting to verify whether style and content of

character’s utterances influence his extraversion

• model based on actions/behaviours of a character that tries to examine their impact on

the character’s extraversion

• model based on descriptions of a character using predicatives and adverbs (for example

Elizabeth cried mournfully)

The system was able to classify a character as an introvert or an extrovert. An example of

frequency word clouds for model based on characters’ descriptions is presented in Figure 1.6. In

order to be able to investigate the personality of a character, we need to know which parts of

the analysed text are dedicated to this character. Consequently, proper characters’ annotations

can have many applications in a task of personality profiling in novels.

22

2. Theoretical Background

2.1. Metrics used for evaluating NLP models

In order to evaluate the results of the model, several standard metrics used in NLP are used.

This section contains a brief description of each of them.

2.1.1. Precision and Recall

Two most common measures for model effectiveness are precision and recall [10]. Notion used

for defining them is based on a contingency table [8] (see Table 2.1). A model is about to forecast

a proper label for a named entity. Every such prediction falls into one of the four classes defined

in the table. This table completely describes the outcome of the model. However, analysing each

entry of the table separately is very time-consuming, precision and recall are used in order to

describe the quality of the result of the model.

Precision can be intuitively understood as the ability of the model not to label as X a named

entity that is in fact Y. In other words precision is the percentage of results of the model that

are relevant. It is defined as:

precision =
tp

tp+ fp

Recall can be intuitively understood as the ability of the model to find all named entities

which correspond to some label X. In other words, recall is the percentage of all relevant results

correctly recognized by the model. It is defined as:

recall =
tp

tp+ fn

predicted positive predicted negative

actual positive true positives (tp) false positives (fp)

actual negative false negatives (fn) true negatives (tn)

Table 2.1: Standard confusion matrix describing all possible outcomes of classification.

23

2. Theoretical Background

2.1.2. F measure

F measure is a single metric which trades off precision vs. recall [10]. It can be described as

a weighted harmonic mean of the precision and the recall. It ranges in [0, 1] where value equal

to 1 is the maximum score. F measure is defined as:

F =
(β2 + 1) · precision · recall

β2 · precision+ recall

β in this formula weights the importance of recall and precision. β = 1 means that recall and

precision are equally important, β < 1 emphasizes precision and β > 1 emphasises recall.

2.2. Named Entity Recognition

Named entity recognition (NER) is a subtask of information extraction that locates named

entities in unstructured texts. In this context ’named entity’ is a general name for all real-world

objects which have a name assigned, for example, people, countries, cities, organizations. NER

is assigning a proper category to every located named entity. The result of NER is an annotated

block of text in which all named entities have their category assigned. An exemplary output of

the NER system is presented in an example 2.1.

Bill was hired by Apple in 2008.

↓

[Bill]Personwashired by [Apple]Organization in [2008]Time.

(2.1)

The most common categories are person, location, organization. In more domain-specific versions

of the task, the considered named entities may include drug names, names of pharmacological

substances, works of art, brands, etc.

Due to many ambiguities present in natural languages, the NER task is relatively difficult.

Considering a sentence Bush was found in a park., it is almost impossible to say, what is meant

by word Bush. Is it a plant growing in the park or maybe the president George Bush that was

having a walk on a sunny day in a park near his residence? Having read the whole text from

which the sentence was extracted, a human would not have any problems with assigning meaning

to this word. However, for a NER system, it is not straightforward. Especially due to the fact

that the capitalization of the word does not provide any information, as the word stands at the

beginning of the sentence. This is an extreme example of the ambiguities that are connected

with NER, nevertheless, it indicates the difficulty of the task in general.

Special cases that need to be handled by NER models differ depending on an analyzed

language, domain, source of texts. A NER system having good performance on New York Times

24

2.2. Named Entity Recognition

news very often may fail on informal tweets. Therefore, the perfect NER model should be unified

and should not require fine-tuning for different languages and domains. What makes NER task

so difficult is the fact, that even for us recognizing and classifying named entities in sentences

out of context is not trivial, or even impossible without domain-specific knowledge.

The amount of special cases that need to be handled requires special guidelines for this task.

These guidelines assure the consistency with the gold standard created by human annotators. In

order to verify the performance of NER systems a set of standard Natural Language Processing

(NLP) metrics is used including precision, recall and F1.

Approaches to NER can be divided into four general groups (they are presented in a survey

[38]):

• knowledge-based,

• unsupervised and bootstrapped,

• feature-engineered supervised,

• feature-inferring neural network.

The early knowledge-based NER systems were mostly based o handcrafted rules, ontologies,

lexicons or orthographic features. They were therefore strongly domain-dependent. These sys-

tems were followed by feature-engineered systems based on, for example, a hidden Markov model.

The most recent approaches are designed using mainly neural networks. They are becoming very

popular, as they do not require domain-specific resources or feature engineering [38]. Due to the

number of possibilities of using neural network for the NER task, this group of systems requires

significant attention. The choice of discussed systems is inspired by the survey [38]. Clear di-

vision of NER systems’ categories described there, helps to understand the differences between

presented systems and each approaches motivation.

2.2.1. Knowledge-based NER Systems

The main characteristic of knowledge-based NER systems is relying on domain-specific re-

sources, such as lexicons or dictionaries. This approach is presented in a paper devoted to the

recognition of drugs’ name, and extraction of drug-drug interactions appearing in biomedical

texts [31]. This research’s primary motivation is the automatic discovery of the change in one

drug’s effects by another drug’s presence. The discussed task is divided into two parts: recognition

and classification of drug names in texts, and the extraction and classification of the interactions

between recognized drugs. From the perspective of the NER task, the first part of the research is

25

2. Theoretical Background

crucial. The presented NER methods are applied to the pharmacological domain. Therefore, the

named entities that need to be recognized in the text are pharmacological substances, among

others, brand (branded drug name) and drug-n (an active substance not approved for human

use).

The most successful method presented in the paper makes use of ChemSpot tool [29].

ChemSpot combines conditional random field (CRF) with a dictionary. Both of them are in-

dependently used to annotate the text. Subsequently, the annotations of both components of

the system are merged. ChemSpot employs a second-order CRF and offset conjunction of two,

which adds all features of the two preceding and the two succeeding tokens to the token’s fea-

tures. It provides CRF with more contextual information. The dictionary used by ChemSpot

is post-processed with many rules including expanding partial matches (boundaries should lie

next to whitespace, tab or line-break character), correcting the boundaries of these matches and

truncating common suffixes (such as -induced, -related).

The second top best performing approach is a combination of biomedical resources, such as

pharmaceutical knowledge base DrugBank, ATC classification system (active substances classifi-

cation tool) or MeSH (National Library of Medicine controlled vocabulary thesaurus). However,

the authors of the paper are not providing any detailed information about it.

When it comes to performance, it is observed that brand drugs are recognized more easily

than other categories. The authors of the paper suspect that it can be caused by the fact that

brand names of drugs vended by pharmaceutical companies are carefully selected to be short

and unique. It makes the recognition of these types of drugs less complicated. On the other

hand, drugs of type drug-n are much more challenging to recognize. It is probably due to the

more significant variation and complexity in their naming.

The performance was tested on two different datasets. The first one contains texts focusing

on the description of drugs and their interactions. The performance on this dataset is much

better than on the other one containing abstracts on the subject of drugs interactions but not

necessarily the drugs interactions themselves.

The results presented in the paper show that it is not always trivial to recognize pharma-

cological substances in texts. It is caused by a large number of ambiguities of pharmacological

terms. It can also conclude that knowledge-based systems may have several problems with en-

tities not seen before (like here with drugs of category n-drug). New words are not included in

the dictionaries. Therefore their recognition and correct annotation are far more complicated.

26

2.2. Named Entity Recognition

2.2.2. Unsupervised and Bootstrapped NER Systems

Some of the earliest NER systems were unsupervised, using minimal training data [38]. In

approaches based on labelled examples, many rules are needed to cover the whole domain.

Therefore, in order to train a classifier, a large number of labelled examples is required. The

approach to NER presented in [12] is based on unlabelled data, showing that it can significantly

reduce the requirements for supervision to only seven simple seed rules.

These seven rules proposed by the authors in [12] are the only supervision included in the

model. They make use of the natural redundancy in the unlabelled data. Namely, for many

named entities, both the spelling and their context, are sufficient for their type classification.

The used rules can be divided into spelling (a look-up for the string or looking at words such

as Mr. in a string) and contextual (considering words surrounding the string in the sentence).

The example below taken from [12] illustrates perfectly the redundancy in data that is crucial

in this approach:

..., says Mr. Cooper, a vice president of ...

Here, we can observe both: a spelling rule (the bold string contains word Mr. and a contextual

rule (in the context of the bold string there appears a word president). Both rules imply

the named entity of type person. It can be concluded then that both these features should

predict the same label. It is a very functional dependency in building a classifier. The data can

be represented by a spelling, context pair associated with a set of features. In the case of our

example, the pair is Mr. Cooper, president.

The first unsupervised algorithm proposed in [12] is a heuristic based on a decision list learn-

ing. The algorithm starts with these seven initial seed rules, and at each iteration, it increases

the number of rules. It is done by separating the spelling and contextual features, alternating

between labelling and learning with the two types of features. Here again, the assumption about

data redundancy is visible. It is assumed that either spelling or contextual rule alone is enough

to build a classifier.

The second approach presented in a paper [12] is based on a boosting algorithm. It is based

on AdaBoost algorithm developed for supervised learning. The algorithm attempts to find a

weighted combination of basic classifiers, that minimizes the bound on the number of unlabelled

examples on which these two classifiers disagree. The classifiers are built in parallel from labelled

and unlabeled data. It works in rounds in such a way that each round is composed of two stages.

Each stage then updates one of the classifiers while keeping the other classifier fixed. This method

uses an objective function a measure of agreement between the two classifiers (the number of

examples on which the classifiers do agree). The algorithm attempts to optimize this function.

27

2. Theoretical Background

The approaches presented in paper [12] show the applications of unlabelled data in unsu-

pervised methods. What is crucial in this type of systems, is benefiting from the features and

characteristics of natural languages. In the case of paper [12], it is the language redundancy.

Thanks to this observation, the authors managed to reduce the need for supervision signifi-

cantly. However, it is worth pointing out that the presented system requires in-depth knowledge

about the language and its detailed analysis.

2.2.3. Feature-engineered Supervised NER Systems

Supervised models are characterized by being trained to predict a set of exemplary inputs and

their expected outputs. This way, there is no need for using human-made rules. Such systems for

NER can be based, for example, on hidden Markov model (HMM) that learns to recognize and

classify names, dates, times, numerical quantities and other named entities. One of the earliest

NER system based on HMM is presented in [4].

The authors define NER task in the form of classification problem, where every word is either

part of some named entity category (it belongs to one of the types of named entities) or not

(not-a-name class). Therefore, it is possible to develop a variant of HMM for the named entity

recognition task. All the HMM states are organized into regions in such a way that each region

is assigned to one desired class (a type of named entity or not-a-name). A statistical bigram

language model is used within each region for computing the likelihood of words occurring within

a given region. In this language model, every word’s likelihood is based only on the previous

word. The task can be then formulated as finding the most likely sequence of classes given a

sequence of words.

In the proposed approach, a generative model is assumed, i.e., HMM generates the sequence

of words and labels (name-classes). It is done in three steps:

• generating a name-class, basing on the previous name-class and the previous word;

• generating the first word in this name-class, basing on the current and previous name-

classes;

• generating all subsequent words inside this name-class (as a bigram language model is

considered here, each subsequent word is based only on its immediate predecessor).

These steps are repeated as long as the entire word sequence is not generated.

The proposed model assumes the usage of word features that take into consideration the

language-dependent characteristics of words. The argument for including word features in the

system simplifies some cases in the recognition process. For example, in Roman languages,

28

2.2. Named Entity Recognition

capitalization of the first character in the word is good evidence of all kind of names. This rule

is easy when it comes to implementation, and at the same time, it can significantly improve

the model’s performance. Therefore, throughout the model, each word is accompanied by one of

fourteen proposed word-features. They help indicate whether the given word is a number, the

first word of the sentence, all uppercase, all lowercase, etc. The implemented word features are

generally simple and deterministic computations that can be performed on every word.

One of the interesting conclusions about the proposed NER model’s performance concerns

the effect of word features. Namely, it turned out, that the systems perform better with the

full set of word features than with only some part of it. It means that word features, being

the only language-dependent component of the whole system, really influence its performance.

What is surprising, is the fact that a simple probabilistic model, connected with a small set

of word features can quite well handle the task of NER. Additionally, the authors performed

some tests on texts given in the mixed case (original capitalization), all upper case (all letters

capitalized) and all upper case without punctuation (dots and commas removed). It turned out

that the proposed model outperformed all previous approaches on texts in upper case (when

capitalization could not be used for named entity recognition).

2.2.4. Feature-inferring Neural Network Systems

Initial attempts to use neural network architectures for NER were using feature vectors

constructed from orthographic features, dictionaries and lexicons. Soon this manual way of

creating feature vectors was replaced with using word embeddings [2]. Neural network-based

NER systems can be classified into several groups depending upon their representation of the

words in a sentence. Such representations can be based on words, characters, sub-word units

different than characters or any combination of these [38].

Word Level Architectures

In the case of word-level neural network-based NER systems, the words of a sentence, repre-

sented by their word embeddings, are given as an input to a neural network. The first such model

is presented in [13]. The architecture and the learning algorithm presented there are unified and

applied to various natural language processing tasks, including NER. The basic idea behind this

architecture is to avoid task-specific manual engineering in creating input feature vectors. It can

be achieved automatically, as the system itself learns the internal representation adequate for

the given task on a large amount of mostly unlabelled data. Instead of constructing word feature

vectors manually, the paper presents a method that uses word embeddings.

29

2. Theoretical Background

The proposed architecture uses lookup tables that transform discrete features (words or

characters) into continuous vector representations. It takes sentences as input and learns several

layers of feature extraction that process it. The features computed by layers of the neural network

are automatically trained by backpropagation so that they are relevant for the given task. The

first layer of the neural network extracts feature vectors for each word in a sentence (by a

lookup table operation). Generally speaking, a word representation can be considered as K

discrete features, and with each feature, there is an associated lookup table. A feature vector is

then obtained by concatenating all lookup table outputs.

The next step is extracting higher-level features from the word feature vectors produced by

the lookup table layer. These feature vectors need to be combined in the next layers of the

neural network to provide a tag decision for each word in a sentence. It is possible to tag one

word simultaneously using a window approach, which assumes that the tag of a word depends

mainly on the surrounding words in a fixed size window. Each word in such window is passed

through the lookup table layer to produce a word feature window (a matrix of word features

of words in a window). Further neural network layers include linear ones performing affine

transformations and HardTanh introducing non-linearity to the model by applying hyperbolic

tangent. The output of the network can be interpreted as scores for all possible tags.

An alternative for the window approach is a sentence approach, which considers the whole

sentence while tagging a word. The main difference here is using an additional convolutional

layer. This neural network takes the complete sentence and passes it through the lookup table

layer. Then, thanks to convolutional layers, local features around each word of the sentence

are produced, and they are combined into a global feature vector. What is worth mentioning

is that the size of the output depends on the number of words in the sentence. However, the

global feature vector is supposed to have a fixed size, independent of the sentence length, to

apply subsequent standard affine transformations (in linear layer just like in window approach).

Therefore, an additional Max layer needs to be used. It forces the network to capture the most

useful local features produced by the convolutional layers. It results in a fixed size global feature

vector just as it is desired.

The neural networks discussed in [13] are trained using stochastic gradient descent, by maxi-

mizing a likelihood over a training data. The presented design of the system avoids task-specific

engineering. The system can discover internal representation adequate for NER, having an ex-

tensive, unlabelled data set and the designed learning algorithm. This approach is much more

general and unified compared to the ones discussed earlier in this paper.

30

2.2. Named Entity Recognition

Character + Word Level Architectures

Another subgroup of neural network-based NER systems is combining word context and the

characters of this word [40]. It was proven that these systems work quite well in case of NER

task. The main advantage of them is that they do not require much domain-specific knowledge

or resources.

Word as a combination of its embedding and a convolution over its characters

One way of applying word and character level approach is combining a word embedding with

a convolution over word’s characters. Such a model is discussed in [9]. The authors again try to

avoid hand-crafting rules and applying a lot of feature engineering. They attempt to improve the

approach presented in section 2.2.4, which limits the context taken into consideration to a fixed

size window around each word. The approach presented in [9] attempts to analyze long-distance

relations between words as well. Additionally, the authors include in the word representation,

also the character level features. They enrich the final word representation and make it possible

to exploit, for example, suffixes or prefixes of words. It can be handy with rare words, as in their

case, the embeddings may not be sufficiently trained.

Even though the model presented in [9] is inspired by the one described in section 2.2.4, there

are some significant differences. For each word, a convolution and a max layer are employed

to extract a new feature vector from character embedding and optionally character type. A

character embedding is taken from a lookup table randomly initialized with values drawn from

a uniform distribution. The character type is one of the following options: upper case, lower case,

punctuation, other. Both, the character embedding and the character type feature, are computed

through lookup tables, concatenated and then passed into the convolutional neural network. The

entire word embedding (lowercased beforehand) is based on some pre-trained, available model.

This approach makes use of external knowledge in the form of lexicons. For every considered

named entity category, there is a compiled list of known, tokenized named entities. For each

category, every n-gram is matched against entries in the lexicon. A match is considered successful

when the n-gram matches the prefix or suffix of an entry and is at least half the entry length.

Partial matches of length smaller than two are discarded (the only exception are named entities

of category person). When, for some named entity category, there are multiple overlapping

matches, exact matches have priority over partial matches. Additionally, the longer matches are

preferred over shorter ones and the earlier matches over later ones. What is also essential, all

matches are case insensitive. The feature for each token in a match is encoded to indicate the

position of the token in the matched entry (for example begin, inside, end).

Instead of the feed-forward neural network, like in approach presented in section 2.2.4, the

31

2. Theoretical Background

authors propose a bi-directional long short-term memory (LSTM). The extracted features (word

embedding concatenated with character-level features) are fed into a forward LSTM network and

a backward LSTM network. The output of each of these networks is decoded using a linear layer

and a log-softmax layer into log-probabilities for each tag category. The two output vectors are

then added together, producing the final output with scores for each possible tag category. The

usage of LSTM unit with the forget gate allows learning long-distance dependencies between

words. This way, it is possible to take into account an infinite context on both sides of a word.

As mentioned in the introduction to the NER task, the context of the word may be crucial for

choosing the correct named entity category. Therefore this approach, making use of LSTMs, is

auspicious.

Word as a combination of its embedding and a LSTM over its characters

Another way of applying word and character level approach is combining a word embedding

with LSTM over the word’s characters. This kind of approach is discussed in [25]. The authors

propose two neural architectures for NER that use no language-specific features. They rely on

character-based word representations, learned from the supervised corpus, and unsupervised

word representations, learned from unannotated corpora.

The solution is based on two facts. The first one states that names may consist of multiple

tokens over which we should reason jointly. It is handled in the model, thanks to LSTM. The

second fact states that to say whether a token is a name, we need to consider both: orthography

of the word and the word’s distribution in a corpus. The word representations combine both:

character-based word representation and distributional representation (the used embeddings are

learned from a large corpus sensitive to word order). The dropout training is used to prevent

the model from being dependant on one representation too strongly.

The first proposed neural network architecture is a combination of LSTM and conditional

random fields (CRF). LSTM was proven to deal with long dependencies by incorporating a

memory-cell. It uses several gates that control the proportion of the input provided to the mem-

ory cell, and the proportion of the information from the previous state that can be forgotten at

this point. The representation of a word in a context, using bidirectional LSTM, is a concate-

nation of its left and right context representations. The tagging decisions are modelled jointly

using a CRF. This way, neighbouring tags are taken into consideration.

The second presented architecture is inspired by transition-based dependency parsing with

states represented by stack LSTMs. It incrementally constructs chunks of inputs maintaining a

summary embedding of the stack’s content. It means that stack LSTMs permit embedding of a

stack of objects that are both added and removed, while sequential LSTMs model sequences from

32

2.2. Named Entity Recognition

left to right. The chunking algorithm, presented in the paper, is based on transition inventory

using several stacks of words (for example output with completed chunks) and containing several

transitions (for example reduce(y) which pops all items from the top of the stack creating a chunk,

labels it with label y and pushes the representation of this chunk onto the output stack). To

compute an embedding of a sequence of tokens of a chunk from output chunk, a bidirectional

LSTM is run over the embeddings of its constituent tokens, as well as over the token representing

the type of the chunk (a label y assigned to it with reduce(y)). The output contains a single

vector representation for each labelled chunk that is generated. This approach is beneficial with

names that consist of multiple tokens.

The main characteristic of the proposed architectures for sequence labelling is the fact that

the model output label dependencies in a straightforward way. It is done either via simple CRF

layer or using a transition based chunking algorithm. The crucial part in both architectures is

using both, pre-trained word representation and the character-based one, that capture orthog-

raphy and morphology of words. It is precious as it attempts to implement our intuition about

NER task, namely, that the named entity category is strongly related to its orthography and

morphology (at least in English).

Character + Word + Affix Level Architectures

The last subgroup of neural network-based NER systems worth covering here is an architec-

ture that augments the character+word level one with affixes. This kind of systems learns affix

embeddings, alongside word and character representations. The origin of this idea lies in feature

engineering, where affixes play a significant role.

This type of architecture is described in [39]. The paper’s authors propose a specific learned

representation of prefixes and suffixes of the word, avoiding reliance on any dictionary features.

This way, they make use of the semantics of specific sub-word units (morphemes). Using affixes

is especially useful with words, that was not seen before, as the model can create a better

approximation of their meanings.

To avoid language-specific affix lexicons or morphological tools, the authors use a simple

approximation of morphemes. Affixes at the beginnings and ends of words are considered as

words features, complementary to character-based features. All n-gram prefixes and suffixes in

the training corpus are considered to select only the ones with a frequency above some fixed

threshold. Only the most frequent ones are chosen, as it is highly probable that these affixes

behave like true morphemes of an analyzed language. It is a very promising and at the same

time inexpensive way to enrich the representation of the words. This way it contains separate

33

2. Theoretical Background

embeddings for characters, prefixes, suffixes and words.

The neural network architecture is similar to the one described in section devoted to systems

with the word as a combination of its embedding and an LSTM over its characters. The learned

representation for approximated affixes is concatenated with bidirectional characters’ LSTM

encoding and the word’s learned representation. Then the final representation of each word is

fed to another bidirectional LSTM, followed by CRF layer to produce the named entity tags

for each token in a sentence. The output is encoded to indicate the position of the token in the

recognized named entry (beginning, inside, out).

The presented approach offers an exhaustive way of creating word representations making

use of semantics of morphemes. The idea is relatively straightforward and not complex from an

implementation point of view. However, it injects to the model the linguistic intuition about

words not seen before. It is built on previously proposed and well-tested solutions, emphasizing

the semantics of the words.

2.2.5. Summary of Approaches to NER

The analysis of the group of most common approaches to the NER task confirms the ini-

tial impression about the difficulty of the task. Recognizing named entities and their correct

classification requires addressing many ambiguities and exceptions present in natural languages

[32]. Systems designed to solve this task are a starting point for many other NLP tasks, such

as questions answering, topic modelling, relation extraction, information retrieval. Therefore,

recently, a high emphasis was put on creating well-performing systems for NER.

Presenting the approaches in the order, in which they are given in [38], exposes that these

systems were built upon each other or, more precisely, they were inspired by each other. Every

next system tries to address some problems encountered in the previously proposed solution.

This way, more functionalities are added or replaced with those with better performance on this

specific task. Every next system is also more faithful to our linguistic intuition about recognizing

named entities.

The first group of systems, attempting to rely mainly on domain-specific knowledge and lexi-

cons, is reliable only possessing exhaustive resources. However, in the real world tasks, we rarely

have access to such bases of domain-specific knowledge. Therefore, such systems, from the point

of view of the performance, are not overly successful. The discussed unsupervised NER system,

on the other hand, attempts to address linguistic observation about language redundancy. Using

features and characteristics of natural language reduces the need for supervision to a handful of

handcrafted rules. It is a step in the right direction, as the systems begin to reflect our intuition

34

2.3. Approximate Text Matching

about NER task. Unsupervised learning is beneficial, from the perspective of collecting data, as

it can be based on unlabelled one.

As for supervised systems, it is crucial to bear in mind the need of collecting a big amount

of labelled data for training. In the case of the NER task, manual annotations are very time-

consuming. Nonetheless, this kind of systems is most successful so far. NN based NER systems

generally outperform all the other groups of systems discussed in this paper. Thanks to word

embeddings, there is no need for vector feature engineering, which should be done by the system

itself. Moreover, architectures taking advantage of LSTMs can analyze sentences and words

on multiple levels, considering the broad context of words. The word’s representation can be

composed of affix embedding, characters embeddings, and the word embedding itself. This way,

the entire word semantics is taken into consideration. Such an approach is especially beneficial

in case of data containing words not seen before. The way of handling these new words (using

affix embeddings) is intuitive from a linguistic perspective.

Creating systems that attempt to reflex our intuition about the solved task makes it easier

to predict, understand and improve the system’s behaviour. Therefore, from all the systems

presented in this paper [38], the last one is the best, in my opinion. Given all these studied, I

would hypothetically pay significant attention to creating exhaustive representations of words,

as they are the main building blocks of the whole solution.

Even though, the results of state-of-the-art NER systems are getting better and better, there

is still room for improvement. As mentioned before, most of the systems perform well on the

type of data on which they were trained. Models trained for NER on the news most probably

have lower performance on a tweet or an extract from a nineteenth-century novel than on a

piece of news. Creating a model indifferent to the type of the text and its source is still an open

challenge in Named Entity Recognition.

2.3. Approximate Text Matching

Definition 2.1 (Approximate text matching). The problem of approximate text matching

can be formally stated as follows: given a long text T1,...,n of length n and a comparatively short

pattern P1,...,m of length m, both sequences over an alphabet
∑

of size ρ, find the text positions

that match the pattern with at most k "errors". [27]

Approximate text matching is generally a problem of finding the positions of a text where a

given pattern occurs with some limited number of "errors" in this match. The term error may

35

2. Theoretical Background

be interpreted in various ways in this context. The error model, which defines how different two

sequences are, usually depends on the applications of the approximate text matching. The idea

is to make the distance between two strings small when there is a high likelihood of one string

being a modified, erroneous version of the second one, under the error model used. [26]

There two categories classifying approximate string matching:

• on-line - the pattern is preprocessed, but the text is not

• off-line - a data structure (index) is built on the text before searching

The second category of algorithms is much more sufficient for large text because text indexing

makes searching dramatically faster.

On-line Approximate String Matching

Levenshtein distance or edit distance is the most popular error model used in case of on-

line approximate text matching [26], [27]. An error is measured in terms of single-character

operations required to change one sequence of characters to the other. The considered operations

are insertion, deletion and substitution. Formally speaking the distance d(x, y) between two

strings x and y is the minimum number of such operations needed to convert one into the other.

Off-line Approximate String Matching

Off-line methods are defined in two dimensions: data structure and search method [27]. The

most commonly used data structures are presented below. All of them are used for text indexing,

but they differ on space and time usage.

• suffix trees - a compressed tree containing all the suffixes of the given string as their keys

and positions in the string as their values;

• suffix arrays - a sorted array of all suffixes of a string;

• q-grams - substrings of the text of length q; in a q-gram index, every different text q-gram

is stored, and for each q-gram, all its positions in the text are stored in increasing text

order;

• q-samples - similar to q-gram; the only difference is that only some q-grams (called q-

samples) are stored, so not any text q-gram can be found;

When it comes to search approaches, there are also several options used in the context of this

problem. They are listed below:

36

2.4. Programming Libraries and Tools

• Neighbourhood generation is based on the idea of k-neighbourhood, which is a set of all

strings that match some pattern with at most k errors. In the beginning, all the strings in

k-neighbourhood are generated. The next step is to find all their text occurrences without

errors in the text.

• Partitioning into exact searching selects patterns substrings that match without er-

rors. The text areas that surround their occurrences are verified for an approximate oc-

currence of the whole pattern. This method is called filtration.

• Intermediate partitioning is the combination of the two approaches listed above. The

search is limited to some pattern pieces, which still may be large and may appear with

errors. However, searching for pattern pieces is still easier and less erroneous than searching

for the whole pattern. The neighbourhood generation is used to search for these pieces of

the pattern.

2.4. Programming Libraries and Tools

This section is devoted to the programming libraries used in the implementation of the

project. It contains a brief description of each library along with typical applications:

• SpaCy [34], [37] is an open-source library for advanced natural language processing written

in python. It provides tools for tasks commonly used in NLP projects such as named entity

recognition, tokenization, part-of-speech tagging, dependency parsing and many more.

• FuzzyWuzzy [11] is a python library for “fuzzy” (approximate) string matching. The

method it uses for calculating the distance between two sequences of characters is based

on Levenshtein distance (see Section 2.3). The library was designed for one of the most

popular Web’s event ticket search engine SeatGeek. It basically searches all tickets sites in

order to find the best price for a ticket for a specific event.

• SpaCy NER Annotator is a web service offering an easy way to annotate text with

self-defined labels/tags manually [33].

37

3. My Research Process and Encountered Problems

This chapter describes in details the whole research process that accompanied creating pro-

tagonistTagger, along with problems encountered on the way. The work on the project can be

divided into several separate steps described in details in Chapter 4. Each of these steps includes

an analysis of the problem, testing several tools and preparing a workshop for more advanced

topics further in the project. Almost during every phase, some exciting ambiguities appeared or

surprising difficulties which are worth mentioning. They are described in details in this chapter.

The research process was performed on a fixed set of ten novels, for which all the results and

findings are presented. A testing set used also further in the projects, was extracted from these

novels. Details on constructing the testing sets are given in Chapter 4.

3.1. Imperfections of NER in Novels

NER (described in details in Section 2.2) aims at fining all named entities of category person

which may be matched in the further step with the proper label. Therefore, we want the NER

model to find as many entities of this kind as possible. Ideally, it should be able to find all named

entities that correspond to any protagonist in a discussed novel. In case when named entity of

the other category, for example, location, is recognized as person it is simply not matched with

any protagonist’s label in the matching phase. The matching algorithm (described in details

in Section 4.4) ignores named entities that don’t resemble any of the given tags. Therefore, we

want the NER model to have the highest possible recall. Precision at this step is not crucial. It

is taken into account to a greater extent in the matching algorithm. At this point, I want to find

all relevant entities in the analyzed text.

3.1.1. NER Model Performance

The novel is a particular type of text. Therefore, I needed to verify the performance of stan-

dard NER model on exemplary sentences extracted from novels. The used model is a general-

purpose, pre-trained one, that can be used to predict named entities, part-of-speech tags and

38

3.1. Imperfections of NER in Novels

syntactic dependencies. The model, in a form provided by the spaCy library (described in Sec-

tion 2.4), can be used straight away or it can be fine-tuned on more specific data. It was trained

on web data such as blogs, news and comments. The type of training data differs significantly

from novels. Therefore, it may be necessary to fine-tune the standard model with some novel-

specific data [30], [23].

The testing set for standard NER model includes 100 sentences containing named entities

extracted randomly from 10 novels. All together the testing set for NER model includes 1000

sentences, and it has been annotated manually with the general tag person. The metrics describ-

ing the performance of the NER model on this testing set are presented in Table 3.1. They are

given only for named entities of category person. The overall recall on the whole testing set is

0.8. The result is not bad at first sight. However, we need to bear in mind that this is the first

part of the annotation process. When we add the potential error of the matching algorithm, the

performance of the whole method may turn out to be very low.

3.1.2. Not Recognized Named Entities

It is worth to investigate which named entities are troublesome for the standard NER model.

The analysis of the NER model performance is based mainly on the three novels with the lowest

recall according to Table 3.1. The examples of named entities of category person not recognized

by the NER model are given in Table 3.2. These lists of named entities may not be complete.

Not recognized or incorrectly classified named entities are discovered by manually analysing the

annotations done by NER model on a testing set. It is possible that some names of tangential (not

playing a crucial role in a plot) literary characters are not present in the testing set. Therefore,

it is not verified whether the names of these characters are correctly recognized and classified as

proper named entity categories. However, as it has been mentioned before, the main goal is to

achieve a good performance on novels in general. Therefore, the main protagonists are crucial

here and their names always appear in the testing sets.

The most alarming thing is the fact that in some of the tested novels, the main protagonist’s

name is not recognized by the NER model as an entity of category person. It is the case in

The Picture of Dorian Gray where the entity Dorian is recognized as norp, which stands for

Nationalities or religious or political groups. A similar situation is with the novel Emma. In this

case, the entity Emma is given a label org that should be assigned to companies, agencies or

institutions. It is easy to imagine what happens with the overall performance of the protagonist-

Tagger on a novel when the name of the main protagonist is not recognized correctly. It drops

drastically, even with good matching algorithm. Therefore, it is crucial to fine-tune the NER

39

3. My Research Process and Encountered Problems

Novel title precision recall F-measure support

The Picture of Dorian Gray 0.69 0.41 0.51 90

Frankenstein 0.91 0.62 0.74 93

Treasure Island 0.75 0.66 0.7 97

Emma 0.84 0.77 0.81 115

Jane Eyre 0.86 0.78 0.82 97

Wuthering Heights 0.95 0.87 0.91 108

Pride and Prejudice 0.85 0.87 0.86 124

Dracula 0.86 0.94 0.9 97

Anne of Green Gables 0.91 0.96 0.94 114

Adventures of Huckleberry Finn 0.71 0.99 0.83 86

*** Overall results *** 0.84 0.8 0.82 1021

Table 3.1: Metrics computed for standard, pretrained, not fine-tuned NER model for

general label person for each part of the testing set devoted for different novels, as well as for

the whole testing set in general. The support is the number of occurrences of class person in the

correct target values. In red, there are marked the most alarming results regarding the recall.

model, so that it can handle these entities. The process of fine-tuning NER model is described

in details in section 4.3.

3.2. Problems in Assigning Recognized Named Entities to Specific Literary

Characters

At this point, it is assumed that we are given the list of full names of protagonists in the

novel. The task is to recognize the named entities in the text and match them properly with

labels from this list. The task of assigning named entities to the literary characters from the list

may seem trivial. However, we need to keep in mind that the named entities found in the novel

rarely take the form the same as in the list. Sometimes only the first name is used, in other

cases surname preceded with a personal title (as described in Section 3.2.3). In extreme cases, a

diminutive or a nickname may be used (for example Lizzy instead of Elizabeth or Nelly instead

of Ellen).

Taking it all into consideration, it becomes visible that the task is not trivial anymore.

Somehow it needs to be verified how similar is a named entity to each label from the list. Only

then it will be possible to assign a proper, most similar label to the entity. A technique called

approximate text matching can be used to calculate this similarity. The theoretical background

of this technique is presented in Section 2.3. The method is available via an open-source python

40

3.2. Problems in Assigning Recognized Named Entities to Specific Literary
Characters

Novel title Named entities of category person not recognized by NER

The Picture of Dorian Gray Dorian/Dorian Gray, Sibyl Vane, Hallward/Basil/Basil Hallward

Frankenstein Safie, Victor, Felix, Walton, Justine, creature/monster, Clerval, De Lacey

Treasue Island Flint/Cap’n Flint, Silver (however John Silver is recognized), Black Dog, Gray,

Trelawney, Billy Bones, Hawkins, Arrow (however Mr. Arrow is recognized), Pew

Emma Emma/Miss Woodhouse, Harriet

Jane Eyre Blanche/Blanche Ingram/Miss Ingram, Bessie, Leah, Miss Eyre, Helen, Georgiana,

Rosamond, Fairfax Rochester, Rivers, Madam Reed, Miss Temple, Grace

Wuthering Heights Nelly (however Ellen is recognized), Linton, Hindley, Hareton, Isabella, Heathcliff

Pride and Prejudice Charlotte, Bingley, Wickham, Lydia, Gardiners, Georgiana, Kitty

Dracula Arthur, Art, Count Dracula, Harker

Anne of Green Gables Anne, Gilbert, Diana (in some cases)

Adventures of Huckleberry Finn the duke, Aunty (Aunt Sally Phelps)

Table 3.2: Examples of entities not recognized in the testing set. These errors were discovered

while manually checking the correctness of annotations with a general tag person on the testing

set.

library called FuzzyWuzzy (see Section 2.4 for detailed technical information).

3.2.1. Regular and Partial String Matching

String similarity can be counted in multiple different ways. The general method uses Leven-

shtein distance to calculate differences between two sequences of characters (see Section 2.3 for

more theoretical details). In the context of our problem, the basic measurement of edit distance

between a named entity found in a text and a character name from a list may not solve the prob-

lem. Using this method for entity Elizabeth and full name Elizabeth Bennet gives the similarity

of only 72%. Such a result is not satisfying. Fortunately, there is also a modification of basic

method which calculates so-called partial string similarity. It uses a heuristic called best partial

which, given one sequence of length n and a noticeably shorter string of length m, calculates

the score of the best matching substring of length m of the sequence. Using this method in the

previous example, we get a similarity of 100%, which is what we expected (see Table 3.3).

3.2.2. Handling Diminutives of Literary Characters

Not all assignments are as easy and straightforward as in the previous example. The most

difficult cases are diminutives and nicknames. Let us analyse all occurrences of the character

41

3. My Research Process and Encountered Problems

Named entity Character’s full name Regular string similarity Partial string similarity

Elizabeth Elizabeth Bennet 72% 100%

Lizzy Elizabeth Bennet 19% 40%

Lizzy Mr Fitzgerald Darcy 24% 40%

Table 3.3: Example of calculated string similarities for some of the named entities recognized in

Pride and Prejudice.

Elizabeth Bennet in the novel presented in Table 3.4.

Having read the book it is possible to notice that Elizabeth is sometimes called Lizzy by her

family. Diminutive Lizzy is used only approximately 12% of the cases so it is not very common

in this specific novel. However, in some novels using diminutives may be more popular and they

need to be handled somehow. Information about diminutive Lizzy is not given on Wikipedia

so it is not included in our list of labels. Lizzy is recognized as a named entity of category

people, but it is not similar enough to any of the protagonists from the list. The partial string

similarity between Lizzy and Elizabeth Bennet equals 40% and is the same as between Lizzy and

Mr Fitzwilliam Darcy (see Table 3.3). As we can see, the straightforward approximate string

matching technique is not enough in this case.

Entity Appearances

Elizabeth 635

Lizzy 96

Miss Bennet 72

Miss Elizabeth 12

Elizabeth Bennet 8

Table 3.4: Appearances of the references to Elizabeth Bennet in the novel in different configura-

tions

Fortunately, the list of diminutive for each common English name is finite and usually not very

long. Example of the most common diminutives for several names is presented in Figure 3.1. The

complete list of diminutives is used only when the recognized named entity is not similar enough

to any of the protagonist listed in a list of labels for a given novel. The detailed description of

the procedure is presented in Section 4.4.

3.2.3. Named Entities Preceded with Personal Title

The NER is responsible for finding names of protagonists in texts. In order to simplify the

verification of the method, initially, only short pieces of texts are analyzed. NER analyses descrip-

tions of literary characters taken from Wikipedia. Table 3.5 presents an exemplary description

42

3.2. Problems in Assigning Recognized Named Entities to Specific Literary
Characters

Figure 3.1: Example of diminutives for some common English names.

of Elizabeth Bennet, the main character of Pride and Prejudice by Jane Austen.

"the second eldest of the BENNET daughters, she is twenty years old and intelli-

gent, lively, playful, attractive, and witty but with a tendency to form tenacious and

prejudicial first impressions. As the story progresses, so does her relationship with

Mr DARCY. The course of ELIZABETH and DARCY’s relationship is ulti-

mately decided when DARCY overcomes his pride, and ELIZABETH overcomes

her prejudice, leading them both to surrender to their love for each other."

Table 3.5: An exemplary description of Elizabeth Bennet, the main character of Pride and

Prejudice by Jane Austen

All named entities of the category people recognized by NER in the description of Elizabeth

Bennet presented in Table 3.5 are in bold. Names of Elizabeth and Mr Darcy can be easily

matched with protagonists of the novel. However, there is a problem with the entity Bennet.

In this context, Bennet is not the name of any specific character, but rather the name of the

whole family. Somehow we need to distinguish between Bennet meaning the whole family and

Bennet being the surname of a single character. There is a regularity that can be observed in

this case. Namely, Bennet preceded with a personal title such as Mr., Mrs., Ms. or Miss should

be identified as a single person, whose surname is Bennet. In all other cases, Bennet is treated

as the whole family and not a single person that can be identified in a text.

To illustrate the scale of the problem, let us investigate the situation of the entity Bennet in

the whole novel Pride and Prejudice. The novel has 121,533 words. The entity Bennet appears

323 times according to the Table 3.6. However, in these appearances entities like Mrs. Bennet,

Mr Bennet, Miss Bennet are also included which are not recognized properly by the NER,

43

3. My Research Process and Encountered Problems

even though the personal title totally changes the meaning here. Therefore, in 314 out of 323

appearances of the entity Bennet, it is misunderstood, and some meaning is lost. This problem

can be easily handled by verifying whether there is a personal title before the surname in cases

when the named entity includes only a surname. In case when a surname is preceded with the

name, for example, Elizabeth Bennet there is no problem because NER recognizes it simply as

a one entity containing two tokens.

Entity Appearances

Bennet 323

Mrs. Bennet 153

Mr. Bennet 89

Miss Bennet 72

Table 3.6: Appearances of the entity Bennet in the novel in different configurations. Each con-

figuration is simply searched in the whole text of the novel and the number of its appearances

is given in the table.

3.3. Summary of the Most Important Conclusions and Findings

This section contains a summary of all findings made during the research problem. It con-

cludes the aspects of the problem that need to be handled in the final solution. The table 3.7

contains the most important findings along with some simple examples. This section aims to

assemble all the information in one place and organize them to make the understanding of the

whole method easier.

44

3.3. Summary of the Most Important Conclusions and Findings

Conclusion Detailed information about the finding Example

Standard NER model performance

Standard NER models

do not perform very well

on novels

Due to the fact that most standard NER models are

trained on data available on the web, such as news,

comments, blogs, they may not be well-adjusted to

literary texts from novels

The recall of standard NER

model on sentences extracted

from novels is below 70% in

some cases (see Table 3.1).

Some typical English

names are not given a

correct named entity

category

In some novels, the names of the main protagonist

are recognized as named entities, however, they are

assigned with an incorrect category (such as norp, or

org)

Name Emma is given a label

org, that should be assigned to

companies

Assigning recognized named entities to specific literary characters

Partial string similarity

is necessary for matching

a recognized named en-

tity with a proper pro-

tagonist

Due to the fact that the protagonists in novels are

sometimes called only by their first name or only sur-

name regular string similarity is not enough to make

a correct match. Therefore a best partial strategy is

used.

Regular string similarity of

(Elizabeth Bennet, Elizabeth)

equals 72%, whereas partial-

string similarity equals 100%

Personal title (eg. Mr,

Miss) can be used as an

indicator of the protago-

nist

In the novels, it may happen that there are several

protagonists with the same surname. The personal

title preceding the surname can be used as a hint for

matching it with a proper protagonist

Miss Bingley is definitely Caro-

line Bingley, not Charles Bing-

ley

Diminutives can be han-

dled with an external

source of data

Diminutives may decrease the performance of the pro-

tagnistTagger as they can not be easily matched with

protagonists using string similarity. Therefore, an ex-

ternal source of data is used to find a base form of a

name for a diminutive appearing in a text.

A name Abby can be connected

with its base form Abigail and

then easily matched with a pro-

tagonist named Abigail Smith

(using string similarity).

Table 3.7: The summary of the information gathered in the research process. It contains a list of

all main conclusions along with several simple examples. The first part of the table concerns the

first stage of protagonistTagger - recognizing named entities of category person. And the second

part of the table concerns the second stage of the tool - matching each recognized named entity

with a tag of a proper protagonist.

45

4. My Approach

This chapter describes in details all steps of my project workflow. Theoretical aspects of

methods and algorithms used on the way are discussed in Chapter 2 and are omitted here. This

chapter offers only an overview of the desired outcomes of each step, and it does not cover the

analysis of the encountered problems and the ways of solving them. The in-depth analysis of

these topics is given in Chapter 3.

4.1. Initial Corpus with Plain Novels’ Texts

A corpus of novels’ texts is the pillar of the whole projects. The desired format of each novel

is a plain text starting with a first chapter and ending with the last one. All text connected with

publications, editorship, footnotes, prefaces, etc. should be removed. What one wants to analyse

is only the plain novel text. Because novels themselves are usually very long and complex texts,

there is no need to create a corpus with a large number of titles in it. Thirteen novels should

suffice to begin with.

4.2. Lists of Full Names of the Protagonists

This step uses Wikipedia parser, which goes through an article about given novel looking

for a section devoted to its literary characters. In the case of well-known novels, such section is

usually a part of Wikipedia article. The standard structure of this section is a list of full names

of all crucial protagonists along with tangential ones. Sometimes the names of protagonists are

followed by a short description of the character. In the majority of cases, it is possible to easily

extract the list of all the names of the protagonists from the given article. An example of such

a protagonists’ section taken from Wikipedia is presented in Figure 4.1. The extracted list of

names of literary characters is used as the predefined tags for a given novel in the annotation

process in the next steps.

46

4.3. Recognizing Protagonists Appearances Using NER

Figure 4.1: Example of a section from the article from Wikipedia devoted for characters of a

novel.

4.3. Recognizing Protagonists Appearances Using NER

The next step is to recognize tokens in the text of the novel, which pertain to named entities

of type person. These named entities are potential candidates to be annotated with a proper tag

with the protagonist’s full name. Even though the names of people are basic examples of named

entities, standard models used for NER may not be enough to handle novels. The majority

of names, surnames or combinations of both is usually found without any problems. However,

there are plenty of cases which a standard NER model may not be able to handle. It may result

in a drop in performance. Examples of entities problematic for standard NER model are given

in Table 3.2 in Section 3.1.2.

4.3.1. Fine-tuning NER Model – Outline

An iterative procedure of fine-tuning NER model is used in order to improve its performance

on novels. It assumes a few iterations of fine-tuning NER model and verifying its performance.

It can be divided into the following steps:

1. NER is applied to the testing set. The results (the model output) are compared with

testing set manually annotated with the tag person.

2. If the results of NER are not satisfying (many entities that are of category person are not

recognized or they are assigned a different category) then NER needs to be fine-tuned. In

47

4. My Approach

standard NER model;

sample dataset with novels

testing NER model on sample data from novels

on recognizing named entity of category person

not satisfying results satisfying results

fine-tune NER

model on manually

annotated sample data

DONE

NER model ready!

Figure 4.2: Simplified process of fine-tuning NER model.

order to do it, a set with manually annotated entities of category person not recognized by

NER is created. This set is used to fine-tune the NER model. And we go back to step 1.

3. If the results of NER are satisfying, we can move further.

The testing set for evaluating the performance of NER is extracted from the texts of the novels.

When the performance is not satisfying, it needs to be verified which entities of category person

are not recognized in the testing set. The next step is to create a training set containing examples

of such entities annotated manually. This set is used to fine-tune the NER model. Furthermore,

the whole procedure repeats until the performance of the NER model is satisfying. The general

idea of this procedure is presented in Figure 4.2.

4.3.2. Training Sets for NER Fine-tuning

I considered two approaches to creating a training set for a NER model. The imperfections

of the standard NER model visible on novels are meaningful enough to pay significant attention

to fine-tuning it.

Training_set_1 – Sentences with not Recognized Named Entities of Category per-

son

The first approach to creating a training set assumes using the named entities of type person

that were not recognized or that were not assigned a proper type. The novels used for creating the

testing set are scanned in search of sentences containing these entities. Each entity is represented

48

4.3. Recognizing Protagonists Appearances Using NER

by a similar number of sentences. Then the chosen sentences are annotated in a semi-automatic

way with a general tag person creating a training set for fine-tuning the standard NER model.

Exemplary training set created this way contains approximately five sentences with each not

correctly recognized named entity of type person. It gives all together 485 sentences.

Training_set_2 – Sentences from Novels with Injected Common English Names

Many common English names, such as Emma, Charlotte, Arthur or Grace, are not recognized

at all by a standard NER model, or they are classified as entities of a type different than person.

Thus the second approach to creating a training set is based on this observation. In order to

improve the performance in this area, the training set needs to contain sentences typical for

novels, when it comes to style, vocabulary, syntax. These sentences should additionally contain

as many common English names as possible. The easiest way to create such a set of syntactically

and semantically correct sentences is to extract from novels sentences containing, for example,

names of the main protagonist. Then each such name can be replaced by some other common

English name in order to enrich our training set [35]. An example of such replacement in given

in Table 4.1. The considered list of most common English names contains almost 300 female and

almost 300 male names. The exemplary training set created this way contains more than 1600

sentences with each common English name appearing there approximately three times.

"Jane’s delicate sense of honour would not allow her to speak to Elizabeth privately

of what Lydia had let fall; Elizabeth was glad of it; till it appeared whether her

inquiries would receive any satisfaction, she had rather be without a confidante."

"Deborah’s delicate sense of honour would not allow her to speak to Harvey pri-

vately of what Lydia had let fall; Harvey was glad of it; till it appeared whether her

inquiries would receive any satisfaction, she had rather be without a confidante."

Table 4.1: An example of replacing a name of the main protagonist with some other common

English name. Jane is replaced by Deborah and Elizabeth is replaced by Harvey. Sentence is

extracted from Pride and Prejudice by Jane Austen.

4.3.3. Fine-tuning NER Model

As a base for fine-tuning, I use an existing, pre-trained language model. It is using embeddings

with subwords features, convolutional layers with residual connections, layer normalization and

maxout non-linearity (theoretical background is given in Section 2.2). The training data is

shuffled and batched. For each batch, the model is updated with the training sentences from

49

4. My Approach

a batch. In order to make it a little bit harder for the model to memorize data and to reduce

overfitting, the dropout is used.

Name of the testing set # sentences

per novel

novels in-

cluded

Size (in

sentences)

Tags in gold standard

Testing_set_large_Tag-person 100 10 1000 person

Testing_set_large_Tag-full-names 100 10 1000 full names of literary characters

Testing_set_small_Tag-person 100 3 300 person

Testing_set_small_Tag-full-names 100 3 300 full names of literary characters

Table 4.2: Summary of all testing sets used. For every set, there is a gold standard created

manually.

4.3.4. Testing Sets for NER Fine-tuning

Two testing sets are used for verifying the performance of the NER model. The first one is the

same as the one used in the research process described in Section 3.1. It contains 100 sentences

from 10 novels - altogether 1000 sentences. These sentences contain various named entities of

category person. The gold standard of this dataset was annotated manually with a tag person.

The novels included in this testing set are also used in the training data, even though the

training set and the testing set are disjoint. Additionally, this testing set has been already used

for verifying which named entities are not recognized and classified properly. Taking this into

consideration, the results of the model on this dataset may not be fully trustworthy. Therefore

an additional testing set has been created. It contains 100 sentences from 3 different novels

- altogether 300 sentences containing different named entities of category person. Again, this

testing set has been annotated manually with a tag person in order to create a gold standard.

The results of the NER model on this testing set are undoubtedly authoritative. A summary of

all testing sets used so far, as well as the ones that are created for testing the performance of

the ProtagonistsTagger are given in Table 4.2.

4.3.5. Fine-tuned NER Model Performance

The performance has been analyzed for three different versions of the NER model [17]:

• standard NER model - existing, pre-trained, standard model provided by the spaCy library

(the same model as in the research process described in Section 3.1)

• fine-tuned model 1 - standard NER model fine-tuned with a training_set_1

50

4.3. Recognizing Protagonists Appearances Using NER

Novel title / NER model precision recall F-measure support

The Picture of Dorian Gray standard 0.69 0.41 0.51 90

fine-tuned 1 0.71 1 0.83 90

fine-tuned 2 0.74 1 0.85 90

Frankenstein standard 0.91 0.62 0.74 93

fine-tuned 1 0.76 0.99 0.86 93

fine-tuned 2 0.78 0.98 0.87 93

Treasure Island standard 0.75 0.66 0.7 97

fine-tuned 1 0.75 0.95 0.84 97

fine-tuned 2 0.78 1 0.87 97

Emma standard 0.84 0.77 0.81 115

fine-tuned 1 0.83 1 0.91 115

fine-tuned 2 0.85 1 0.92 115

Jane Eyre standard 0.86 0.78 0.82 97

fine-tuned 1 0.77 0.96 0.85 97

fine-tuned 2 0.74 0.95 0.83 97

Wuthering Heights standard 0.95 0.87 0.91 108

fine-tuned 1 0.88 0.98 0.93 108

fine-tuned 2 0.88 0.99 0.93 108

Pride and Prejudice standard 0.85 0.87 0.86 124

fine-tuned 1 0.75 0.98 0.85 124

fine-tuned 2 0.8 0.98 0.88 124

Dracula standard 0.86 0.94 0.9 97

fine-tuned 1 0.72 0.93 0.81 97

fine-tuned 2 0.72 0.99 0.83 97

Anne of Green Gables standard 0.91 0.96 0.94 114

fine-tuned 1 0.82 1 0.9 113

fine-tuned 2 0.85 0.99 0.92 113

Adventures of Huckleberry Finn standard 0.71 0.99 0.83 86

fine-tuned 1 0.6 0.99 0.75 86

fine-tuned 2 0.61 1 0.75 86

*** Overall results *** standard 0.84 0.8 0.82 1021

fine-tuned 1 0.76 0.98 0.85 1020

fine-tuned 2 0.77 0.99 0.87 1020

Table 4.3: Metrics computed for: standard, pretrained NER model and both fine-tuned NER

models for general label person. They are computed separately for each part of testing set

Testing_set_large_Tag-person devoted for different novels as well as for the whole testing set

in general. The support is the number of occurrences of class person in the correct target values.

In red, there are marked the most alarming results regarding the recall.

51

4. My Approach

Figure 4.3: Visualization of fine-tuned NER models.

• fine-tuned model 2 - standard NER model fine-tuned using both training sets: train-

ing_set_1 and training_set_2

The fine-tuned models are presented in Figure 4.3 just for reference.

Performance of all NER models is presented in Table 4.3. The testing set that is used at this

point is Testing_set_large_Tag-person (see Table 4.2 for more details about the testing sets).

At this point, we are interested mostly in the recall on the testing set. We are fine-tuning NER

in order to be able to recognize all named entities of category person. The obvious conclusion

from the results on this testing set is that the recall for standard NER model, in almost all

cases, is significantly lower than for fine-tuned models. It means that indeed the standard NER

models are not prepared for novels. Now the question is, which training set used for fine-tuning

the model is the best. Taking into consideration the whole testing set, NER model fine-tuned

with both training sets (fine-tuned model 2) reaches slightly better performance. Considering

every novel in the testing set separately, fine-tuned model 2 has a higher recall in case of 4

out of 10 novels and fine-tuned model 1 in case of 3 out of 10 novels. Therefore we can say

that the model fine-tuned with two training sets (fine-tuned model 2) turns out to be a little

bit better on this testing set. It means that including in the training set sentences with names

of the main protagonists not recognized by standard NER model is not enough. It turns out

that there is also a non-negligible set of names of secondary or episodic characters that are not

52

4.3. Recognizing Protagonists Appearances Using NER

Novel title / NER model precision recall F-measure support

The Catcher in the Rye standard 0.68 0.68 0.68 74

fine-tuned 1 0.59 0.78 0.67 74

fine-tuned 2 0.58 0.91 0.71 74

The Great Gatsby standard 0.75 0.84 0.79 102

fine-tuned 1 0.66 0.95 0.78 102

fine-tuned 2 0.66 0.98 0.79 102

The Secret Garden standard 0.9 0.82 0.86 97

fine-tuned 1 0.81 0.96 0.88 97

fine-tuned 2 0.83 0.95 0.88 97

*** Overall results *** standard 0.78 0.79 0.78 273

fine-tuned 1 0.69 0.91 0.78 273

fine-tuned 2 0.69 0.95 0.8 273

Table 4.4: Metrics computed for: standard, pretrained NER model and both fine-tuned NER

models for general label person. They are computed for new testing set Testing_set_small_Tag-

person. They are computed separately for each part of the testing set devoted for different novels

as well as for the whole testing set in general. The support is the number of occurrences of class

person in the correct target values.

properly recognized and that are influencing the performance.

The novels used for creating testing set are also used for creating training sets for fine-tuning

NER. It may make the results of this testing set not fully reliable. Therefore it is also worth

checking how the analyzed NER models perform on a brand new data extracted from different

novels. The second testing set used is Testing_set_small_Tag-person (see Table 4.2 for more

details about the testing sets). The performance of all NER models on this new testing set is

presented in Table 4.4. The recall of this new testing set makes us draw similar conclusions as

for the first testing set. Again fine-tuned model 2 has a higher recall on the whole testing

set in general, as well as in case of almost every novel analyzed individually. However, what is

interesting, the differences in recall between these two fine-tuned models on this new testing set

are more visible. All in all, we can draw a conclusion that NER model fine-tuned using both

testing sets (fine-tuned model 2) achieves better results and is more desired for this specific

task. What is important, its performance on a new testing set is also very high.

It is also worth analyzing other metrics on both testing sets. Observations are almost the same

for both testing sets (with results presented in Table 4.3 and in Table 4.4). Low precision in our

case means that there is a lot of named entities recognized as person that are in reality named

entities of some other category. Standard NER model has, in general, the highest precision

but it is achieved at the expense of much lower recall. Taking into consideration each novel

53

4. My Approach

separately, fine-tuned model 2 presents slightly higher precision than fine-tuned model 1.

It is another argument in favour of fine-tuned model 2. When it comes to F-measure, taking

into consideration results for both testing sets, again fine-tuned model 2 overachieves the

other two NER models.

4.4. Using Matching Algorithm

The matching algorithm is supposed to assign a proper tag with the protagonist’s full name

to the named entity recognized in the previous step. The algorithm evaluates the match between

the recognized named entity and each tag from the list predefined for a given novel. The tag with

the highest resemblance is chosen as an answer. The method is mostly based on approximate

string matching (see Section 2.3 for more theoretical details).

Matching Algorithm Outline

This section presents the general idea for the matching algorithm, that is finding the best

match for a recognized named entity of category person in the list of protagonists appearing in

the novel. The algorithm tries to solve the problem of personal titles presented in Section 3.2.3.

Furthermore, diminutives appearing as a part of recognized named entities are handled. Due to

many ambiguities and the number of cases that need to be handled, the method is not 100%

correct and precise. However, the problems that are appearing most frequently in the analyzed

novels are taken into consideration. The pseudo-code of the whole procedure is presented in Al-

gorithm 1.

The algorithm takes as input:

• named_entity - a named entity of category person found by NER model,

• protagonists - a list of all literary characters/protagonists in the novel,

• prefix - a prefix that is a token appearing before the recognized named entity; it can be

a personal title or an article the, or empty string otherwise,

• partial_similarity_precision - value indicating how similar two strings need to be in

order to be considered as potential matches; it is used as lower bound for partial string

similarity described in Section 3.2.1.

54

4.4. Using Matching Algorithm

Algorithm 1: Finding best match for the recognized named entity in the list of literary

characters

1 potential_matches = [];

2 for protagonist in protagonists do

3 ratio = regular_string_similarity(protagonist, named_entity);

4 if ratio == 100 then

5 return match = protagonist;

6 partial_ratio = partial_string_similarity(protagonist, named_entity);

7 if partial_ratio >= partial_similarity_precision then

8 potential_matches.add(protagonist);

9 end

10 potential_matches = sorted(potential_matches) # wrt partial_ratio ;

11 match = None ;

12 if len(potential_matches) > 1 then

13 match = potential_matches[0];

14 if prefix is not None then

15 if prefix == the then

16 return match = the + named_entity

17 title_gender = get_title_gender(prefix) # either female or male ;

18 for potential_match in potential_matches do

19 if get_name_gender(potential_match) == title_gender then

20 return match = potential_match

21 end

22 return match

23 else if len(potential_matches) == 0 then

24 original_name = get_name_from_diminutive(named_entity);

25 if original_name is not None then

26 return match = protagonist from protagonists that contains original_name

27 else

28 return "person"

29 return potential_match[0]

The Algorithm 1 is the core of a proper annotation process. It is responsible for the correct

assignment of a protagonist from a list to a named entity found in the text of the novel. It

addresses all the important problems recognized and described in the Chapter 3. Due to many

55

4. My Approach

exceptions that need to be handled, each named entity is analyzed very carefully. The detailed

description of the matching algorithm is given below in order to clarify the process of analysis

of each named entity of type person found in the text.

Algorithm Analysis

The main idea of the matching algorithm is to collect potential candidates from the list of

protagonists that may correspond to the given named entity. Then the algorithm chooses the

best match from this list of potential candidates. In order to verify if a literary character from

the protagonists list is a potential match, the approximate string matching method is used. First

of all it is checked (using regular_string_similarity) if the named_entity is identical to any of

the literary characters from the protagonists list (lines 3-5). If so, the work of the algorithm

is done, and no further analysis is needed. However, if it is not a case, the partial_ratio is

computed for named_entity and each literary character form the protagonists list using par-

tial_string_similarity. If it is above the given threshold (partial_similarity_precision) a given

protagonist from the protagonists list is considered as a potential match (lines 6-8). Having

completed these steps, we dispose of a list of potential matches from which the best one needs

to be chosen. Therefore, the list of potential matches is sorted decreasingly with respect to the

computed partial_ratio (line 10).

At this stage, the only thing that is left to do is to check whether the considered named

entity is one of the exceptions that we are handling. First of all, we check whether the prefix

(token preceding the recognized named entity) can give us any clue (lines 14-21). If the prefix is

the article the, it is assumed that the whole family with the surname given in the named entity

is considered. Therefore, all the literary characters from the protagonists list with the same

surname as in the given named entity should be returned (lines 15-16). If the prefix is one of the

personal titles, the gender indicated by it is recognized. Then the first literary character from

potential_matches list that has the same gender as the personal title in the prefix is returned

(lines 17-21). Here we need to use an assumption that the name which is higher in the list

is more probable due to the higher similarity score. It may not always be the case, but some

simplifications are necessary. The last considered variant appears when not even a single literary

character was qualified as a potential match. The reason for such a situation may be the fact that

the named entity includes not the common name of the literary character but the diminutive.

In such a case, the additional search is performed in an external dictionary of diminutives (lines

23-26). If the named entity is not found in the dictionary of diminutive a general tag person is

returned. It means that any of the predefined tags match the named entity.

56

4.5. ProtagonistTagger Workflow

The matching algorithm, of course, is not handling all of the possible cases. It would be highly

ineffective when it comes to its complexity. The role of the matching algorithm is to assign a

literary character from a list to a recognized named entity in the text of the novel as precisely

as possible. Some assignments may turn out to be incorrect. However, we need to keep in mind

that the purpose of the project is not creating a corpus of entirely correctly annotated novels

but a corpus annotated in a way enabling further analysis of the novels. It means that some

margin for error can be accepted.

4.5. ProtagonistTagger Workflow

The steps did up to this point compose into the functionalities of the protagonistTagger. This

tool combines finding named entities of category person in a text (using fine-tuned NER) and

matching them with a proper tag (using matching algorithm). It means that we have now all

the components needed to annotate the text of the novel with our predefined tags. This process

is presented in the block diagram (see Figure 4.4). A title of a novel is given as an input to

the Wikipedia articles parser. As a result, a list of protagonists listed in the Wikipedia article is

returned. The plain text of the novel is taken from the corpus and analyzed using the fine-tuned

NER. The NER finds named entities of category person which need to be labelled. Having the

list of protagonists and the named entities recognized in the text, the matching algorithm is

used. It returns, as a result, a text of the novel labelled with proper protagonists’ names.

4.6. Evaluating Annotations Done by the protagonistTagger

In order to verify the correctness of the matching algorithm, a testing data set is created. It is

annotated using the matching algorithm and compared with the gold standard created manually.

The results are given in the form of standard metrics such as precision, recall and F measure.

The matching algorithm is being improved until the results can be considered as satisfying. A

detailed description of the evaluation process is given in Chapter 5.

4.7. Creating a Corpus of Annotated Novels

The final stage is creating a corpus of novels using the protagonistTagger. For each novel that

is desired to be in a corpus, we need to prepare a full text of it and a list of protagonists’ names

57

4. My Approach

Figure 4.4: Simplified process of annotating named entities of category ’person’ with proper

literary characters’ names in a novel.

that is used as a list of tags. This data are given as an input to the protagonistTagger. The

final corpus contains thirteen annotated texts of novels. However, thanks to the created tool

(protagonistTagger) it can be easily extended as needed.

58

5. Evaluation of the ProtagonistTagger

The protagonistTagger (described in details in Chapter 4) is evaluated on the prepared testing

sets (see Table 4.2 for details about testing sets):

• Testing_set_large_Tag-full-names,

• Testing_set_small_Tag-full-names.

Testing sets are sampled from the novels’ texts. They include the same sentences as the sets used

for testing the NER model (see Section 5.2 for more details about testing sets). The sentences

are manually annotated with full names of literary characters, creating the gold standard. The

annotations done by the protagonistTagger are compared with the gold standard. Performance

is presented using standard metrics described in details in Section 2.1.

5.1. Requirements for the protagonistTagger

It is not expected that the protagonistTagger will correctly annotate all literary characters

appearing in the 500-pages book. However, it is desired that it will be able to annotate the

majority of the main characters’ appearances correctly.

Since the algorithm processes large text files, it needs to work relatively fast. We need to bear

in mind that to create a plausible corpus, many novels need to be processed by the protagonist-

Tagger and annotated.

Another aspect, worth mentioning, is the variety of difficulties connected with annotating

literary characters appearing in the novels (they ere recognized and defined in Chapter 3). Indeed,

they need to be considered in the process of creating the corpus. The corpus should contain as

many different examples representing these problems as possible, and the protagonistTagger

should be able to deal with them. Therefore the following requirements can be pointed out for

the created tool:

• high, but not perfect accuracy,

59

5. Evaluation of the ProtagonistTagger

• high performance, namely annotating a novel should be done in a reasonable time (in most

cases no more than an hour),

• resistance to difficulties connected with annotating literary characters in different novels.

5.2. Testing Dataset

For the testing dataset to be valid, it needs to have two main features. The testing dataset

needs to be:

• representative – format, genre and domain vocabulary of the data (in our case different

novels in text format) is defined and preserved; furthermore, the testing set resembles

closely the intricacies of data;

• balanced – dataset contains examples of novels representing all the difficulties recognized

in the analysis of the problem.

The testing datasets are created bearing these conditions in mind.

They contain sentences chosen randomly from multiple novels differing in style and genre. The

testing sets contain all together 1300 sentences (100 sentences from each novel). Each sentence in

the testing set contains at least one named entity of category person recognized with SpaCy (it

does not have to be a protagonist of the novel). Therefore, it is guaranteed that each testing set

contains sufficient examples on which the performance of the protagonistTagger can be verified

and evaluated. We need to bear in mind that not all literary characters appearing in a novel are

given on Wikipedia. Therefore, not all literary characters appearing in the novel are included

in predefined tags. Nevertheless, sentences containing some names of minor literary characters,

not included in the list of tags, are considered in the testing set. They should be simply given a

general tag Person. It helps to verify if some additional, undesired annotations are not put.

5.3. Gold Standard Annotations

A gold standard is about to describe what a correctly performing model would output. It

defines the requirements for the protagonistTagger. Gold standard annotations are created man-

ually. Each sentence in the testing dataset is manually annotated with the tags associated with

corresponding literary characters. The annotations are different for novels, and of course, they

correspond to the novel from which the sentence is extracted. This way, the dataset with gold

60

5.3. Gold Standard Annotations

standard annotations containing 1300 sentences is created.

5.3.1. Ambiguities

The annotation may seem trivial at first sight. However, when one starts considering specific

examples, it usually turns out that there are many cases when the decision whether to put a

tag or which tag to choose is not obvious [22]. Also, in the problem of annotating novels with

proper literary characters there occur many such situations. The most common ambiguities are

as follows:

1. Should a personal title be included in an entity or should it be omitted? - In this case,

a decision is caused by the specificity of SpaCy NER model. SpaCy NER model, while

recognizing a person, includes in a personal entity titles such as Miss or Madam but omits

Mr and Mrs. While creating the gold standard, the same convention as in SpaCy standard

NER model is preserved.

2. Should nouns in the genitive, expressing for example possession, be annotated?. In this

case, a named entity can be treated only as a marker of the possession, not the character’s

actual appearance. However, it is assumed that named entity, regardless of the grammatical

case, is treated the same way for simplicity.

3. Should nouns denoting a function, such as Captain or Uncle, be annotated as a part of

named entity? - In many novels, literary characters are called with names including some

function, for example, Uncle Silas or Captain Flint. Also in the list of literary characters,

such collocations appear. We can assume, that a function of the literary character is treated

as a part of the named entity only when a noun denoting this function is written in upper

case. Again the same convention as in SpaCy standard NER model is preserved.

4. When should an article ’the’ be included in an entity? - As discussed in Section 3.2.3 the

article ’the’ is considered meaningful only when it precedes a surname. The named entity

should then be understood as a group of people with the same surname, e.g. a whole family,

brothers. Thus, the goal is to include the article ’the’ in a named entity only in this exact

case.

The whole testing set is manually annotated, creating the gold standard, following the above

requirements and guidelines. The ambiguities listed above were discovered while manually an-

notating the gold standard. As the testing set is hopefully representative and large enough for

this specific task, the provided list should cover the most critical and common ambiguities in

novels.

61

5. Evaluation of the ProtagonistTagger

Novel title Precision Recall F-measure

Pride and Prejudice 0.84 0.85 0.83

The Picture of Dorian Gray 0.96 0.97 0.96

Anne of Green Gables 0.94 0.96 0.95

Wuthering Heights 0.79 0.77 0.77

Jane Eyre 0.8 0.75 0.76

Frankenstein 0.91 0.88 0.89

Treasure Island 0.92 0.91 0.91

Adventures of Huckleberry Finn 0.89 0.93 0.9

Emma 0.93 0.86 0.88

Dracula 0.9 0.89 0.89

*** Overall results *** 0.88 0.87 0.87

Table 5.1: Performance of the protagonistTagger on the first testing set Testing_set_large_Tag-

full-names.

Novel title Precision Recall F-measure

The Catcher in the Rye 0.8 0.77 0.78

The Great Gatsby 0.88 0.9 0.89

The Secret Garden 0.8 0.79 0.79

*** Overall results *** 0.83 0.83 0.83

Table 5.2: Performance of the protagonistTagger on the second testing set

Testing_set_small_Tag-full-names.

5.4. ProtagonistTagger’s Results

This section presents the performance of the prepared method in numbers. Statistics are

presented for each tested novel separately and each testing set as a whole. Statistics are based

on the metrics defined as in Section 2.1. Tables 5.1 and 5.2 present standard NLP metrics

computed for each part of the testing set devoted to a different novel. In the last row of each

table, an overall result for the whole dataset is given.

These statistics are specifically helpful in analyzing the performance of the method depending

on the genre and style of the novel, and the type of difficulties appearing in it. The analysis

of these dependencies was performed on the available testing sets and it pertains only to the

sentences extracted from novels included in these testing sets. Unfortunately, the set of con-

sidered novels is not big enough to draw general conclusions. The performed analysis confirms

the efficiency of the tool on novels. However, it can not answer the question about the general

dependency of factors, such as the literary genre of novel or amount of literary characters, on

the performance of the tool. This analysis is only considering the novels included in the testing

62

5.4. ProtagonistTagger’s Results

set and is used for drawing conclusions about them, not about novels in general.

5.4.1. Discussion

The general performance of the protagonistTagger on both testing sets is quite good (results

are presented in Tables 5.1 and 5.2). In the performance, all the named entities of category

person are included. Therefore, the performance addresses recognizing and annotating not only

most important protagonists in the novel appearing in the predefined tags, but also the minor,

tangential ones.

In the case of most novels, the precision oscillates between 79% and 96%. Relevant results

are in our case all correctly recognized named entities of category person that are annotated

with their full names out of all named entities of category person. The tool must not annotate

with some protagonist’s name a named entity of different category, for example, org associated

with organizations or companies. It is also essential that named entities of category person are

annotated with a proper tag, being indeed the full name of the character associated with it (or

a general tag person in the case when the name of the literary character is not included in a list

of predefined tags).

On the other hand, it is equally vital for the protagonistTagger to find all the named entities

assigned to each tag. According to the statistics computed for the method, the recall fluctuates

between 75% and 97%. It means that the protagonistTagger can accurately identify the relevant

data and annotate them properly.

Considering the main goals of the protagonistTagger, it is difficult to say whether precision

is more crucial than recall, or the other way round. On the one hand, it is desired to find all the

named entities associated with the novel’s literary characters. On the other hand, it is necessary

to annotate them accordingly in the next step, as the named entities with incorrect tags are

not very useful. The created tool can be, of course, better, being able to recognize more named

entities. However, the ability of the tool to assign correct tags seems to be more critical. While

using protagonistTagger for any of the tasks described in Section 1.2 it is crucial to trust the tags

we have in our data. Otherwise, the results of any further analysis of the prepared annotated

data, for example, relationship detection or character analysis, can be erroneous.

From what can be observed from the protagonistTagger ’s performance, precision and recall

for the tool are comparable. It means that it can quite accurately identify the named entities

corresponding to each tag and provide them with correct tags. Even though the results are

relatively high, it is worth to work on the precision of the tool in the future. Further analysis of

the incorrect annotations may result in some new problems and ambiguities not discovered so

63

5. Evaluation of the ProtagonistTagger

far. Testing the tool on new novels may provide additional cases to be handled as well.

5.4.2. Performance Dependency on the Testing Set Used

While comparing the tool’s performance on the testing sets, it is visible that better results

are achieved on the larger one.

It may be because some names of literary characters appearing in the larger set were explicitly

used for recognizing cases that need to be handled by the matching algorithm. Even though the

rules on which the matching algorithm is based are novel-independent, they still were inspired

by analyzing novels from the testing set Testing_set_large_Tag-full-names.

Maybe some special cases and dependencies which should have been handled are not present

in the novels from the other set – Testing_set_large_Tag-full-names. However, they appear in

the novels from Testing_set_small_Tag-full-names. Of course, it is impossible to analyze all

novels in search of exceptional cases and rules that need to be implemented to match perfectly

each recognized named entity of category person with a full name of a proper literary character.

The novels for the Testing_set_large_Tag-full-names were chosen to be as much diversified as

possible.

Taking it all into consideration, the fact that the performance on Testing_set_small_Tag-

full-names is lower is foreseeable and can be easily explained. The relatively small discrepancy

between the two testing sets results proves that the set of novels chosen for the research process

is representative enough for the analyzed task.

5.4.3. ProtagonistTagger Performace vs. NER Performance

There is an obvious dependency between the protagonistTager and the underlying NER

model. A drop in NER model performance on some novel causes a drop in the whole tool perfor-

mance. It is presented in Figure 5.1. In this case, again, the recall of the NER model is crucial.

The named entities of category person not identified by NER model are not considered by the

matching algorithm in the annotation phase. Rejecting named entities of category different than

person or words that are not named entities is a task of a matching algorithm. The depen-

dency between protagonistTagger ’s performance and the NER model recall is visible, especially

in novels from the Testing_set_small_Tag-full-names. The lowest recall for both: NER model

and protagonistTagger is reported for The Catcher in the Rye. In this specific example, this

dependency is evident.

What is also worth mentioning, is the lower NER model performance on novels from the

Testing_set_small_Tag-full-names, what is visible in the Figure 5.1. Especially in case of The

64

5.4. ProtagonistTagger’s Results

Figure 5.1: Performance of the protagonistTagger on both testing sets presented for each novel

separately. Additionally, the recall of the used NER model is given on the graph (the pink line),

in order to verify the dependency between NER and the performance of the protagonistTagger.

Novels used in Testing_set_small_Tag-full-names are marked with gray underlining.

Catcher in the Rye and The Secret Garden from the Testing_set_small_Tag-full-names NER

model may be the main reason of the drop in the performance of the protagonistTagger. Ad-

ditionally, as mentioned before, it is more probable for the tool to have some problems with

matching named entities with predefined tags on brand new novels. It is caused by the fact,

that the rules included in the matching algorithm may not cover all possible special cases and

ambiguities appearing in novels not included in the analysis.

5.4.4. ProtagonistTagger Performace vs. Number of Literary Characters in a Novel

One of the factors that intuitively should influence the performance of the protagonistTagger

is the number of literary characters in a novel that is analysed. The number of protagonists in

a novel determines the number of tags that are used by the protagonistTagger. The more tags

the tool has to choose from, the more difficult is the task of matching them correctly to each

recognized named entity. The relation between the precision of the protagonistTagger and the

number of tags per each novel is presented in Figure 5.2. It can not be said unambiguously

that these two values are in inverse proportion in the testing sets. The novels on which the

65

5. Evaluation of the ProtagonistTagger

Figure 5.2: The left vertical axis describes the number of literary characters (tags used by the

protagonistTagger) in each novel, whereas the right vertical axis describes the precision of the

protagonistTagger (given in percents) for each novel. Novels used in Testing_set_small_Tag-

full-names are marked with gray underlining.

tool achieved both the lowest and the highest precision – (The Picture of Dorian Gray and The

Secret Garden) – have a relatively small number of literary characters.

Another factor that was suspected to negatively influence the performance of the protagonist-

Tagger is the number of tags sharing some common part. The case of Bennet family in Pride

and Prejudice by Jane Austen is discussed in details in Section 3.2.3. It is stated there that

protagonists with the same surname are problematic even for human annotators. Sometimes a

personal title preceding the named entity can be helpful. However, matching correctly tags that

share the same surname or even name may be nontrivial. For that reason, I created statistics of

tags that share some common part. These statistics are given for each novel included in both

testing sets in Table 5.3. Additionally, they are presented on graph in Figure 5.3 along with the

performance of the protagonistTagger.

Unfortunately, again no obvious relation between these two vales is visible. It may be caused

by the fact that common parts in tags may not be related to the main protagonists (the ones

that appear most often in the novel and the testing sets). Therefore, the testing sets are not

representative enough in this case. For example, in the case of Anne of Green Gables that has

66

5.5. Linguistic Analysis of Tested Novels

relatively many literary characters, half of which share the same name or surname, the tool’s

performance is very high. Nonetheless, in the case of Wuthering Heights, with a similar number

of protagonists, half of which again share a common name or surname, performance is much

lower. It is caused by the fact that in Wuthering Heights the tags that share common parts

correspond to the main protagonists. Whereas, in case of Anne of Green Gables such common

elements appear rather in tags corresponding to tangential characters.

In general, it can be concluded that the performance of the protagonistTagger depends on

many factors, not only the number of tags and the percentage of tags with the common part in

a novel. These two factors, in some cases, can negatively influence the performance of the tool.

However, this impact is not certain in the case of all novels.

Title of the novel # literary charac-

ters/tags

tags that share

a common part

% tags that share

a common part

Pride and Prejudice 18 13 72%

The Picture of Dorian Gray 9 4 44%

Anne of Green Gables 21 11 52%

Wuthering Heights 19 12 63%

Jane Eyre 27 13 48%

Frankenstein 19 4 21%

Treasure Island 17 4 23%

Adventures of Huckleberry Finn 16 7 43%

Emma 14 9 64%

Dracula 9 2 22%

The Catcher in the Rye 13 4 31%

The Great Gatsby 10 4 40%

The Secret Garden 10 7 70%

Table 5.3: The number of literary characters (tags used by protagonistTagger) appearing in each

novel and the number of tags that share a common part. A common part can be the same name

or surname. The same personal title in two tags is not considered as a common part.

5.5. Linguistic Analysis of Tested Novels

The analysis done in the previous sections of this chapter is not providing a clear answer to

the question about the characteristics of the novel that have the most substantial impact on the

tool’s performance. Therefore, in this section, I attempt to answer this question by analyzing the

performance of the protagonistTagger on novels of different literary genre. Intuitively the type

of the analyzed novel, the style in which it is written should influence the tool’s performance. To

67

5. Evaluation of the ProtagonistTagger

Figure 5.3: The right vertical axis describes the percentage of tags sharing a common part

(grey bars), as well as the precision of the protagonistTagger (given in percents) for each novel

in the testing sets. Novels used in Testing_set_small_Tag-full-names are marked with gray

underlining.

68

5.5. Linguistic Analysis of Tested Novels

Figure 5.4: Literary genres of novels used in both testing sets.

verify this hypothesis, at least on the available testing sets, it is necessary to divide the novels

used in testing sets by their literary genre.

In most cases, it is not easy to choose only one literary genre associated with a novel. Usu-

ally, novels combine the characteristics of many different literary genres. Novels appearing in

both testing sets are categorized into seven groups presented in Figure 5.4. This division is a

simplification, as there are many more literary genres which characteristics can be found in the

novels. Nonetheless, the seven chosen genres are a good starting point for the analysis of the

protagonistTagger ’s performance. A more detailed analysis of each novel in the testing sets is

given in Table 5.4.

5.5.1. Performance Dependency on the Genre and Type of Text

The performance of the protagonistTagger is likely dependent on the style and the genre of

the novel. Both the precision and the recall for short and simple texts are relatively higher.

The best performance is achieved for novels such as Treasure Island or Anne of Green Gables

which are juvenile novels dedicated to children. The tool copes well with rather short novels with

69

5. Evaluation of the ProtagonistTagger

Title of the novel Literary genre Style of the novel

The Picture of Do-

rian Gray

gothic novel, novel of manners,

comedy

kept in dark mood; supernatural motifs; sardonic but

comedic

Treasure Island adventure story, coming-of-age

novel, juvenile novel

revealing little emotions; pirate style of speech; fo-

cused on reporting events

Anne of Green

Gables

coming-of-age novel, juvenile novel poetic, descriptive, focused on emotions and inner life

of the protagonists, as well as on the world around

them

Frankenstein gothic novel, science fiction formal, elevated; using complex vocabulary

Emma novel of manners, comedy subtle; simple but direct; witty, sharp, epigrammatic,

abstract; focused on dialogues

Dracula gothic fiction, horror epistolary (novel is composed of diary entries, letters,

etc.); straightforward

Adventures of Huck-

leberry Finn

picaresque novel, coming-of-age

novel, romance novel

written in the vernacular of the characters; casual,

sometimes even incorrect way of speaking in dialogues

Pride and Prejudice romance novel, novel of manners,

comedy

exaggerated, ironic and witty; focused on dialogues

Jane Eyre romance novel, gothic novel,

coming-of-age novel

descriptive and formal; long sentences; verbiage and

lengthy syntax

Wuthering Heights tragedy, gothic novel, realist fiction designed to horrify and fascinate; incorporating su-

pernatural elements; novel kept in dark, foreboding

atmosphere

The Secret Garden coming-of-age novel, romance,

novel of ideas

flowery and rich; descriptive; using multiple adjectives

The Catcher in the

Rye

coming-of-age novel, realist fiction,

satire

vernacular style with slang and curse words; hyper-

bolic; using generalizations

The Great Gatsby tragedy, realism, modernism, social

satire

sophisticated, elegiac, wry; including extended

metaphors and poetic language; incorporating sharp

and sardonic humor

Table 5.4: Literary genre and a short description of a writing style of each novel from testing

sets.

relatively few literary characters, such as The Picture of Dorian Gray or Frankenstein. Similarly,

The Great Gatsby, being relatively short text with only a few protagonists, is relatively high in

the tool performance ranking.

On the other hand, there are a few novels for which the performance of protagonistTagger

is relatively low. They are the two gothic novels: Jane Eyre and Wuthering Heights character-

ized with a wide range of protagonists appearing in them. It may be the reason for a drop in

performance.

Another novel that seems problematic for a tool is a coming-of-age novel (describing the

70

5.6. Summary of the Performance Analysis

protagonist’s growth from youth to adulthood), The Secret Garden. Even though the number of

literary characters appearing in it is not high, the tool had some problems with two protagonists

with the same surname. It caused a significant decline in the correctness of the annotations.

Interestingly, novels of manners featuring many characters (sometimes whole families with the

same surname) did not cause many problems for the tool. For example, the annotations in Pride

and Prejudice or Emma are relatively accurate (both recall and precision above 85%). Therefore,

it is difficult to draw one precise conclusion about the dependency of the tool performance on

the novel’s genre.

5.6. Summary of the Performance Analysis

Generally, the tool achieves really good results on all tested novels (precision and recall

above 80%). The performance of the tool on brand new novels from Testing_set_small_Tag-

full-names shows that it can be successfully used for creating a larger corpus of annotated

novels.

The analysis done in order to find a factor that has the strongest influence on the performance

of the tool provides some clues about the possible direction of improvements. However, it also

shows that the analysed testing sets are not big and representative enough to draw general

conclusions. In order to be able to draw such conclusions, it is necessary to gather a fully

representative testing set. For example, in case of investigating the impact of literary genre on

tool’s performance, we would need relatively big subsets of novels of each considered literary

genre included in this set.

Nevertheless, taking into consideration only the novels included in the testing sets, it can

be concluded that there are numerous factors negatively influencing the performance of the

protagonistTagger. It depends preferably on the number of literary characters appearing in the

novel, its complexity, literary genre, uniqueness of predefined tags and probably many more. The

main challenge is to assign tags to named entities in a form common for the novel (for example,

only first names used or only surnames preceded with the personal title or many diminutives).

What is crucial, this last dependency is novel-specific and author-specific.

71

6. Conclusions

In this thesis, I have performed an in-depth analysis of recognizing named entities of category

person and identifying them as corresponding literary characters of the novel.

The research process resulted in the tool protagonistTagger and the corpus of nov-

els annotated with literary characters’ full names (both can be found on GitHub

https://github.com/WerLaj/protagonist_tagger). The main focus of the performed research pro-

cess evolved, along with new problems and ambiguities encountered on the way. Two main areas

of research include:

• NER applied to novels - analysis focused mainly on literary characters whose names were

not recognized or were recognized incorrectly by the NER model, as well as methods of

creating training sets for fine-tuning NER model;

• Matching recognized named entities with proper literary characters - analysis focused

mainly on variations in naming conventions in novels, as well as on methods for computing

similarity between two strings.

Named Entity Recognition in Novels

The most important conclusion from the performed research process refers to the relatively

low performance of the standard NER models on novels. It is caused by the fact that novels

differ significantly from texts on which standard NER models are trained (such as web articles,

blogs, tweets). It turned out that NER models provided by NLP libraries do not recognize many

common English names, or they are classified as a category different than a person (see Sec-

tion 3.1.2).

These imperfections of the standard NER model were the main obstacle in the project. Low

performance of NER implies the low performance of the entire tool protagonistTagger. Significant

attention on creating a training set for fine-tuning the standard NER model resulted in an almost

perfect performance in recognizing named entities of category person in novels (see Section 4.3).

The training set includes two types of data:

• sentences extracted from novels with semi-automatically injected common English names,

72

• sentences from novels with names of the protagonist that standard NER model failed to

recognize and classify correctly.

Combining these two types of training data resulted in the NER model that achieves satisfying

performance on the testing sets. The recall of the fine-tuned NER model for almost every tested

novel is above 95%.

Matching Named Entities with Literary Characters

Another research problem presented in the thesis concerns matching recognized named entity

of category person with one of the literary characters of a novel. The analysis of the problem

unveiled the complexity of the names appearing in the novels. It is reflected, among others, in

commonly using only part of the full name (first name or surname), diminutives or nicknames,

and personal titles followed only by the surname. Additionally, many novels feature literary

characters with the same name or surname.

These characteristics required creating a set of rules and using external resources (such as

the dictionary of diminutives) to create a mechanism able to solve the problem. The matching

algorithm presented in the thesis (see Section 4.4) is based mostly on the technique called

approximate string matching that computes the similarity between two strings.

ProtagonistTagger’s Performance

The protagonistTagger achieved both the precision and the recall above 80% on the testing

set containing thirteen novels, in the case of almost all analyzed novels. Considering that novel

is a term defining a wide range of various texts, these statistics are more than satisfying. The

best proof of novels’ diversity is the tool’s performance, whose precision varies from 79% to even

96%.

In analyzing the created tool’s performance, I attempted to answer the question about the

characteristics of the novels that have the most substantial impact on the correct annotations.

The tool’s performance depends on the type of the novel, which is visible in specific novels’

results. Furthermore, it depends on the NER model’s performance because identifying named

entities of category person is the initial step in the process of annotation.

However, it is not clear which characteristics of the novels cause most problems for the

tool. The analysis showed that the number of literary characters, the percentage of the literary

characters with the same name or surname, and the novels’ literary genre influence the tool’s

performance. However, there is no apparent dependency of these characteristics on the perfor-

mance of the protagonistTagger. The testing sets on which the analysis was performed is not

73

6. Conclusions

big and representative enough to draw such general conclusions. Instead, it should be said that

novels are such a complicated type of text that many factors impact the correctness of the an-

notations. Indeed, the performance depends mainly on the ability of the matching algorithm to

differentiate the extracted named entities of category person, for example, characters with the

same name or surname.

74

7. Future Work

Improvements of the ProtagonistTagger

According to the fine-tuned NER model’s performance, there is still room for improvement

in the case of some novels. The apparent dependency of the performance of protagonistTagger

on the recall of the NER model means that it is worth working further on fine-tuning the NER

model. Increasing the training set and including more names common in English may improve

the performance. Nevertheless, it needs to be borne in mind that in case of some novels the

NER model performance is already perfect (recall of 100%). Manipulating the model with new

examples may harm such novels.

Another component of the tool that can be improved is the matching algorithm. Further

analysis of the names appearing in novels and characteristics of the novels that influence the

performance of the tool may result in new rules that should be handled. It is impossible to

define all ambiguities and exceptional cases that may appear in novels. However, more detailed

analysis can only improve the rules implemented in the matching algorithm and allow to handle

different cases more precisely.

Applying the Created Corpus for More Detailed Analysis of the Novels

The variety of possibilities presented in Section 1.2 makes further analysis of novels based on

the created corpus very tempting. One of the most exciting applications is the detection of the

relationships between literary characters. Such analysis can be based on dialogues interactions

and creating social networks of protagonists. Our annotated corpus can be extremely useful in

this task.

Another attractive application of the created corpus is a sentiment-based analysis of literary

characters. Extracting parts of the novels associated with specific characters make such analysis

of individual protagonists much easier. All these applications are still to be verified. However,

the created corpus and the tool for annotating new novels seems to be a good starting point

in many NLP tasks performed on novels. The analysis of the state-of-the-art solutions to these

tasks with the annotated novels can be fascinating.

75

7. Future Work

Tool use case in non-literary domain

The protagonistTagger was created having in mind mainly literary domain, especially novels.

Nevertheless, it may be applied to all kinds of texts in which we want to annotate named entities

of category person. The only condition is the access to the predefined tags defining the full names

to be matched to named entities identified in a text. A very interesting field of application are

social media. Texts extracted from social media very often feature many names in different

forms. Being able to recognize and annotate them properly can be very beneficial from the point

of view of investigating human opinions and analysing the sentiments.

76

Bibliography

[1] Apoorv Agarwal et al. “Social network analysis of Alice in Wonderland”. In: Proceedings of

the NAACL-HLT 2012 Workshop on computational linguistics for literature. 2012, pp. 88–

96.

[2] Alan Akbik, Tanja Bergmann, and Roland Vollgraf. “Pooled contextualized embeddings for

named entity recognition”. In: Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers). 2019, pp. 724–728.

[3] David Bamman, Ted Underwood, and Noah A Smith. “A bayesian mixed effects model

of literary character”. In: Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics. 2014, pp. 370–379.

[4] Daniel M Bikel, Richard Schwartz, and Ralph M Weischedel. “An algorithm that learns

what’s in a name”. In: Machine learning. 1999, pp. 211–231.

[5] Julian Brooke, Adam Hammond, and Graeme Hirst. “GutenTag: an NLP-driven tool for

digital humanities research in the Project Gutenberg corpus”. In: Proceedings of the Fourth

Workshop on Computational Linguistics for Literature. 2015, pp. 42–47.

[6] Snigdha Chaturvedi, Mohit Iyyer, and Hal Daumé III. “Unsupervised Learning of Evolving

Relationships Between Literary Characters.” In: AAAI. 2017, pp. 3159–3165.

[7] Snigdha Chaturvedi et al. “Modeling evolving relationships between characters in literary

novels”. In: Thirtieth AAAI Conference on Artificial Intelligence. 2016.

[8] Davide Chicco and Giuseppe Jurman. “The advantages of the Matthews correlation co-

efficient (MCC) over F1 score and accuracy in binary classification evaluation”. In: BMC

genomics. Vol. 21. 1. Springer, 2020, p. 6.

[9] Jason PC Chiu and Eric Nichols. “Named entity recognition with bidirectional LSTM-

CNNs”. In: Transactions of the Association for Computational Linguistics. 2016, pp. 357–

370.

77

BIBLIOGRAPHY

[10] Prabhakar Raghavan Christopher D. Manning and Hinrich Schütze. Introduction to infor-

mation retrieval. 2010.

[11] Adam Cohen. “FuzzyWuzzy: Fuzzy string matching in python”. In: ChairNerd Blog.

Vol. 22. 2011.

[12] Michael Collins and Yoram Singer. “Unsupervised models for named entity classification”.

In: Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and

Very Large Corpora. 1999.

[13] Ronan Collobert et al. “Natural language processing (almost) from scratch”. In: Journal

of machine learning research. 2011, pp. 2493–2537.

[14] Paul T Costa Jr and Robert R McCrae. The Revised NEO Personality Inventory (NEO-

PI-R). Sage Publications, Inc, 2008.

[15] David Elson, Nicholas Dames, and Kathleen McKeown. “Extracting social networks from

literary fiction”. In: Proceedings of the 48th annual meeting of the association for compu-

tational linguistics. 2010, pp. 138–147.

[16] Lucie Flekova and Iryna Gurevych. “Personality profiling of fictional characters using

sense-level links between lexical resources”. In: Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing. 2015, pp. 1805–1816.

[17] Filip Graliski et al. “GEval: Tool for Debugging NLP Datasets and Models”. In: Proceedings

of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for

NLP. Florence, Italy: Association for Computational Linguistics, 2019, pp. 254–262.

[18] Adrian Groza and Lidia Corde. “Information retrieval in falktales using natural language

processing”. In: 2015 IEEE International Conference on Intelligent Computer Communi-

cation and Processing (ICCP). IEEE. 2015, pp. 59–66.

[19] GutenTag - web application. https://gutentag.sdsu.edu/.

[20] Adam Hammond and Julian Brooke. GutenTag: A User-Friendly, Open-Access, Open-

Source System for Reproducible Large-Scale Computational Literary. 2017.

[21] Michael Hart. “The history and philosophy of Project Gutenberg”. In: Project Gutenberg.

1992.

[22] Nancy Ide and James Pustejovsky. Handbook of linguistic annotation. Springer, 2017.

[23] Ridong Jiang, Rafael E Banchs, and Haizhou Li. “Evaluating and combining name entity

recognition systems”. In: Proceedings of the Sixth Named Entity Workshop. 2016, pp. 21–

27.

78

https://gutentag.sdsu.edu/

Bibliography

[24] Evgeny Kim and Roman Klinger. “A survey on sentiment and emotion analysis for com-

putational literary studies”. In: arXiv preprint arXiv:1808.03137. 2018.

[25] Guillaume Lample et al. “Neural Architectures for Named Entity Recognition”. In: Pro-

ceedings of the the 15th Annual Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies. 2016, pp. 260–

270.

[26] Gonzalo Navarro. “A guided tour to approximate string matching”. In: ACM computing

surveys (CSUR). Vol. 33. 1. ACM New York, NY, USA, 2001, pp. 31–88.

[27] Gonzalo Navarro et al. “Indexing methods for approximate string matching”. In: IEEE

Data Eng. Bull. Vol. 24. 4. Citeseer, 2001, pp. 19–27.

[28] Andrew J Reagan et al. “The emotional arcs of stories are dominated by six basic shapes”.

In: EPJ Data Science. Vol. 5. 1. SpringerOpen, 2016, pp. 1–12.

[29] Tim Rocktäschel, Michael Weidlich, and Ulf Leser. “ChemSpot: a hybrid system for chemi-

cal named entity recognition”. In: Bioinformatics. Oxford University Press, 2012, pp. 1633–

1640.

[30] Xavier Schmitt et al. “A Replicable Comparison Study of NER Software: StanfordNLP,

NLTK, OpenNLP, SpaCy, Gate”. In: 2019 Sixth International Conference on Social Net-

works Analysis, Management and Security (SNAMS). IEEE. 2019, pp. 338–343.

[31] Isabel Segura-Bedmar, Paloma Martnez, and Mara Herrero-Zazo. “SemEval-2013 Task 9:

Extraction of Drug-Drug Interactions from Biomedical Texts (DDIExtraction 2013)”. In:

2nd Joint Conference on Lexical and Computational Semantics, Volume 2: Proceedings of

the 7th International Workshop on Semantic Evaluation (SemEval 2013). 2013, pp. 341–

350.

[32] Mohammad Golam Sohrab and Makoto Miwa. “Deep Exhaustive Model for Nested Named

Entity Recognition”. In: Proceedings of the 2018 Conference on Empirical Methods in Nat-

ural Language Processing. Brussels, Belgium: Association for Computational Linguistics,

2018.

[33] SpaCy NER Annotator. https://manivannanmurugavel.github.io/annotating-tool/

spacy-ner-annotator/.

[34] Bhargav Srinivasa-Desikan. Natural Language Processing and Computational Linguistics:

A practical guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing

Ltd, 2018.

79

https://manivannanmurugavel.github.io/annotating-tool/spacy-ner-annotator/
https://manivannanmurugavel.github.io/annotating-tool/spacy-ner-annotator/

[35] Tomasz Stanislawek et al. “Named Entity Recognition - Is There a Glass Ceiling?” In: Pro-

ceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL).

Association for Computational Linguistics, 2019, pp. 624–633.

[36] Hardik Vala et al. “Mr. bennet, his coachman, and the archbishop walk into a bar but only

one of them gets recognized: On the difficulty of detecting characters in literary texts”. In:

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.

2015, pp. 769–774.

[37] Ralph Weischedel, Martha Palmer, and Mitchell Marcus. OntoNotes Release 5.0 - Lin-

guistic Data Consortium. 2013.

[38] Vikas Yadav and Steven Bethard. “A Survey on Recent Advances in Named Entity Recog-

nition from Deep Learning models”. In: Proceedings of the 27th International Conference

on Computational Linguistics. 2018, pp. 2145–2158.

[39] Vikas Yadav, Rebecca Sharp, and Steven Bethard. “Deep affix features improve neural

named entity recognizers”. In: Proceedings of the 7th Joint Conference on Lexical and

Computational Semantics. 2018, pp. 167–172.

[40] Xiaodong Yu et al. “On the Strength of Character Language Models for Multilingual

Named Entity Recognition”. In: Proceedings of the 2018 Conference on Empirical Meth-

ods in Natural Language Processing. Brussels, Belgium: Association for Computational

Linguistics, 2018.

[41] Albin Zehe et al. “Prediction of happy endings in German novels based on sentiment in-

formation”. In: 3rd Workshop on Interactions between Data Mining and Natural Language

Processing, Riva del Garda, Italy. 2016.

List of symbols and abbreviations

NLP Natural Language Processing

NE Named Entity

NER Named Entity Recognition

PG Project Gutenberg

POS part-of-speech

TP True Positive (outcome of classification)

TN True Negative (outcome of classification)

FP False Positive (outcome of classification)

FN False Negative (outcome of classification)

List of Figures

0.1 Simplified process of creating the corpus of annotated novels and the protagonist-

Tagger tool. 13

1.1 Exemplary statistical analysis of the text of Pride and Prejudice by Jane Austen [19] 16

1.2 Illustration of a process of detecting characters in texts using graph representation

[36]. 18

1.3 Visualisation of social network generated for the text of the novel Mansfield Park

by Jane Austen [15]. 19

1.4 The overview of dynamic changes in the relationship between two characters: Tom

and Becky. (+) stands for cooperative character of the relationship, whether (-)

stands for non-cooperative [7]. 20

1.5 The visualization of an emotional content of Wuthering Heights done using a

method of emotional arcs [28]. 21

1.6 Frequency word clouds for two characters descriptions (predicatives and adverbs)

extracted from novels [16]. The left cloud corresponds to Master Yoda from the

Star Wars, whereas the right cloud corresponds to Sansa Stark from Game of

Thrones. 22

3.1 Example of diminutives for some common English names. 43

4.1 Example of a section from the article from Wikipedia devoted for characters of a

novel. 47

4.2 Simplified process of fine-tuning NER model. 48

4.3 Visualization of fine-tuned NER models. 52

4.4 Simplified process of annotating named entities of category ’person’ with proper

literary characters’ names in a novel. 58

5.1 Performance of the protagonistTagger on both testing sets presented for each

novel separately. Additionally, the recall of the used NER model is given on the

graph (the pink line), in order to verify the dependency between NER and the

performance of the protagonistTagger. Novels used in Testing_set_small_Tag-

full-names are marked with gray underlining. 65

5.2 The left vertical axis describes the number of literary characters (tags used by

the protagonistTagger) in each novel, whereas the right vertical axis describes the

precision of the protagonistTagger (given in percents) for each novel. Novels used

in Testing_set_small_Tag-full-names are marked with gray underlining. 66

5.3 The right vertical axis describes the percentage of tags sharing a common part

(grey bars), as well as the precision of the protagonistTagger (given in percents) for

each novel in the testing sets. Novels used in Testing_set_small_Tag-full-names

are marked with gray underlining. 68

5.4 Literary genres of novels used in both testing sets. 69

List of tables

0.1 An exemplary text extracted from novel Pride and Prejudice by Jane Austen.

Correct tags are written in the subscript of each recognized named entity of

category person. 12

2.1 Standard confusion matrix describing all possible outcomes of classification. . . . 23

3.1 Metrics computed for standard, pretrained, not fine-tuned NER model for

general label person for each part of the testing set devoted for different novels,

as well as for the whole testing set in general. The support is the number of

occurrences of class person in the correct target values. In red, there are marked

the most alarming results regarding the recall. 40

3.2 Examples of entities not recognized in the testing set. These errors were discovered

while manually checking the correctness of annotations with a general tag person

on the testing set. 41

3.3 Example of calculated string similarities for some of the named entities recognized

in Pride and Prejudice. 42

3.4 Appearances of the references to Elizabeth Bennet in the novel in different con-

figurations . 42

3.5 An exemplary description of Elizabeth Bennet, the main character of Pride and

Prejudice by Jane Austen . 43

3.6 Appearances of the entity Bennet in the novel in different configurations. Each

configuration is simply searched in the whole text of the novel and the number of

its appearances is given in the table. 44

3.7 The summary of the information gathered in the research process. It contains

a list of all main conclusions along with several simple examples. The first part

of the table concerns the first stage of protagonistTagger - recognizing named

entities of category person. And the second part of the table concerns the second

stage of the tool - matching each recognized named entity with a tag of a proper

protagonist. 45

4.1 An example of replacing a name of the main protagonist with some other common

English name. Jane is replaced by Deborah and Elizabeth is replaced by Harvey.

Sentence is extracted from Pride and Prejudice by Jane Austen. 49

4.2 Summary of all testing sets used. For every set, there is a gold standard created

manually. 50

4.3 Metrics computed for: standard, pretrained NER model and both fine-tuned NER

models for general label person. They are computed separately for each part of

testing set Testing_set_large_Tag-person devoted for different novels as well as

for the whole testing set in general. The support is the number of occurrences

of class person in the correct target values. In red, there are marked the most

alarming results regarding the recall. 51

4.4 Metrics computed for: standard, pretrained NER model and both fine-tuned

NER models for general label person. They are computed for new testing set

Testing_set_small_Tag-person. They are computed separately for each part of

the testing set devoted for different novels as well as for the whole testing set in

general. The support is the number of occurrences of class person in the correct

target values. 53

5.1 Performance of the protagonistTagger on the first testing set

Testing_set_large_Tag-full-names. 62

5.2 Performance of the protagonistTagger on the second testing set

Testing_set_small_Tag-full-names. 62

5.3 The number of literary characters (tags used by protagonistTagger) appearing in

each novel and the number of tags that share a common part. A common part

can be the same name or surname. The same personal title in two tags is not

considered as a common part. 67

5.4 Literary genre and a short description of a writing style of each novel from testing

sets. 70

	Introduction
	State-of-the-art Research on Literary Text Analysis
	Annotating Literary Characters
	Project Gutenberg – Literary Texts Corpus
	GutenTag – Tool for Analysis of Texts in PG
	Detecting Characters in Literary Texts

	Further Possibilities
	Detecting Relationships Between Literary Characters
	Sentiment Analysis

	Theoretical Background
	Metrics used for evaluating NLP models
	Precision and Recall
	F measure

	Named Entity Recognition
	Knowledge-based NER Systems
	Unsupervised and Bootstrapped NER Systems
	Feature-engineered Supervised NER Systems
	Feature-inferring Neural Network Systems
	Summary of Approaches to NER

	Approximate Text Matching
	Programming Libraries and Tools

	My Research Process and Encountered Problems
	Imperfections of NER in Novels
	NER Model Performance
	Not Recognized Named Entities

	Problems in Assigning Recognized Named Entities to Specific Literary Characters
	Regular and Partial String Matching
	Handling Diminutives of Literary Characters
	Named Entities Preceded with Personal Title

	Summary of the Most Important Conclusions and Findings

	My Approach
	Initial Corpus with Plain Novels' Texts
	Lists of Full Names of the Protagonists
	Recognizing Protagonists Appearances Using NER
	Fine-tuning NER Model – Outline
	Training Sets for NER Fine-tuning
	Fine-tuning NER Model
	Testing Sets for NER Fine-tuning
	Fine-tuned NER Model Performance

	Using Matching Algorithm
	ProtagonistTagger Workflow
	Evaluating Annotations Done by the protagonistTagger
	Creating a Corpus of Annotated Novels

	Evaluation of the ProtagonistTagger
	Requirements for the protagonistTagger
	Testing Dataset
	Gold Standard Annotations
	Ambiguities

	ProtagonistTagger's Results
	Discussion
	Performance Dependency on the Testing Set Used
	ProtagonistTagger Performace vs. NER Performance
	ProtagonistTagger Performace vs. Number of Literary Characters in a Novel

	Linguistic Analysis of Tested Novels
	Performance Dependency on the Genre and Type of Text

	Summary of the Performance Analysis

	Conclusions
	Future Work

